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Replica-free evaluation of the neuronal population information with mixed continuous
and discrete stimuli: From the linear to the asymptotic regime
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Recent studies have explored theoretically the ability of populations of neurons to carry information about a
set of stimuli, both in the case of purely discrete or purely continuous stimuli, and in the case of multidimen-
sional continuous angular and discrete correlates, in the presence of additional quenched disorder in the
distribution. An analytical expression for the mutual information has been obtained in the limit of large noise
by means of the replica trick. Here, we show that the same results can actually be obtained in most cases
without the use of replicas, by means of a much simpler expansion of the logarithm. Fitting the theoretical
model to real neuronal data, we show that the introduction of correlations in the quenched disorder improves
the fit, suggesting a possible role of signal correlations—actually detected in real data—in a redundant code.
We show that even in the more difficult analysis of the asymptotic regime, an explicit expression for the mutual
information can be obtained without resorting to the replica trick despite the presence of quenched disorder,
both with a Gaussian and with a more realistic thresholded-Gaussian model. When the stimuli are mixed
continuous and discrete, we find that with both models the information seem to grow logarithmically to infinity
with the number of neurons and with the inverse of the noise, even though the exact general dependence cannot
be derived explicitly for the thresholded-Gaussian model. In the large noise limit, lower values of information
were obtained with the thresholded-Gaussian model, for a fixed value of the noise and of the population size.
On the contrary, in the asymptotic regime, with very low values of the noise, a lower information value is
obtained with the Gaussian model.
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I. INTRODUCTION provided only in some limit cases. It might well be that re-
stricting oneself to these cases makes the use of replicas
The mutual information, extensively used in the theory ofredundant or at least an alternative choice to other methods.
communicatior{1,2], has been more recently proposed as a In particular, Refs[6,7] have used replicas to study the
measure of the Coding Capacity of real neurons in the braiﬂﬂiti&' linear rise of the information, characterized by small
(see, for example, Ref§3-5], for a general overviey In-  Population sizes and large noise in the firing distributions of
formation estimates, both from real data and in pure theorethe neurons; this limit would roughly correspond to a high
ical modeling, ideally quantify how efficiently an external {€mperature regime for a physical system such as a spin
observer might discriminate between several correlates ¢#1@ss- It is reasonable to think that this limit can be treated
behavior on the basis of the firing of single or multiple ceIIs.and solved without rephcas,. since It s knqwn that annealed
Several theoretical studies have explored the ability of"md quenched averages coincide in the high temperature re-

one population of neurons to encode external stimuli, rel-g'rr|'_|ee're we first reconsider the analvsis performed in Refs
evant to behaviof6—10]; others have tried to assess how ! ysIS b '

efficiently the information is transmitted across several la -[6’7]; we show that, in the limit when the noiseis large

¢ y work. which t distint st ¢ Yand the population siz8l is small, the same analytical ex-
ers of a network, which may represent distinct stages o Iorc’;')ressions for the information can be obtained without the use
cessing in some brain ar¢a1-13.

X - . of the replica trick, by means of a simple Taylor expansion of

In most cited works, the replica tridkl4] has been suc- e |ogarithm, regardless of the nature of the stimulus
cessfully used in order to derive an explicit expression forynether purely discrete or mixed continuous and discrete,
the mutual information. As we will show in detail in the gnd both with a Gaussian and with a more realistic
following section, from the formula of the information rep- thresholded-Gaussian firing distribution.
licas do appear as a natural methodological choice, due to the |n the particular case of mixed continuous angular and
presence of the logarithm of a sum of conditional probabili-discrete stimul[7], the distribution had been parametrized in
ties depending on some quenched parameters. Yet in th@der to model the firing of neurons recorded from the motor
cited works no attempt has been done to verify whether theortex of monkeys performing arm movements, categorized
same results can be obtained without resorting to replicagiccording to a direction and a “typd’15,16. Restricted to
even in the casef6,7,10 where the evaluation could be this dataset, correlations in the preferred direction of a given
carried out without any additional assumption of replicaunit across different movement types were actually observed,
symmetry. but the impact of such correlations on the information con-

Moreover, an exact estimate of the mutual informationtent was not quantified. Thus, here we investigate theoreti-
regardless of the population si2¢ and of the noiser is  cally whether correlations introduced in the quenched param-
often unachievable, so that an analytical expression can beters characterizing the distribution can improve the fit of
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real information curves provided by the model. This wouldwhere; is the firing rate of théth input neuron, whiley is

suggest that such correlations are information bearing, dts mean rate in response to stimukis

better, depress the information, leading to a redundant code. The mutual information between the neuronal firing rates
We move then to the limit of large population sizes and{;} and the stimulis reads

small noise. An attempt to study this regime in the presence

of purely discrete stimuli by means of replicas was unsuc- p({7:}]s)
cessful in Ref[6]. l{m}s)=2 p(S)f IT dmip{7}ls)logy -
Here, we show that even in the asymptotic regime, in the s : P{m})
case of purely discrete stimuli, an analytical expression for 2
the mutual information can be provided without the use of _ o
the replica trick. Since p({7}) can be written asp(s)p({7i}|s), it is

Another rep"ca_free approach to th|s ||m|t was proposedeasy tO ShOW that the mutual information can be e.X.pl’essed as
in Ref. [9], applicable both to the case of continuous andthe difference between the entropy of the firing rates
discrete stimuli, for a generic firing distribution, provided H({7i}) and the equivocatiogH ({i}|s))s:
that it can be factorized into single neuron probability den-
sity functions. No additional quenched disorder was assumed [{7i},s)=H{ 7iH) —(H{7i}]S))s, 3
in the distribution. Here, we try and apply this method to our
particular model and we find the assumption under which weyith
retrieve our original approximation.

Finally, in Ref.[7] it has been shown that, when limited to
the initial linear regime, both the Gaussian and the (H{m}9))s=— 2>, p(s) f IT dmip({7m}ls)
thresholded-Gaussian model provide the same analytical ex- s :
pression for the mutual information, except for renormaliza-
tion of a noise parameter. In particular, lower values of the
information were obtained with the thresholded-Gaussian
model. We investigate this issue in the asymptotic regime 1y _ _
comparing the leading term of the information for both H({mi}) z p(s)J H dnip({ni}[s)log,
models.

Xlog, p({7i}|s), 4

X

2 p(S’)p({ni}IS’)} 5

Il. POPULATION INFORMATION IN THE INITIAL

LINEAR REGIME The variables »;} in p({7;}|s’) are quenchedthe sum

A. Coding of purely discrete and mixed continuous and on the stimulis’ should be performed, and the logarithm
discrete stimuli in a Gaussian approximation taken, for any fixed configuratiofy,;}, before integrating on

The firing of neurons emerging from the analysis of real{ ”i}.' .The repl_|ca trick, devised to perform averages of the
data is characterized by strong irregularities and by a wid artition function across quer)ched disorder in spin glassgs
variability. The choice of a Gaussian model as a possibl 14], Seems to apply also.to this case. Yet, contrary to W.h‘.”‘f[ IS
firing rate distribution might therefore seem unrealistic and ound in the th(;olry of s;?n gIaSSfles, v%nere the ;:(t)nr:ﬁctlwt_les
unjustified. Yet with a large sample of data, it is likely that Va;y ?r? a fmuc thonger ime scahe (\le h respter:]c o he splnsf
most irregularities in the distribution average out; their pres-an erejore they areé quenched, heré the presence o

ence if often due to a too poor sampling, which in turn biaseduenched disorder dqes not reflect any real distinction be-
information estimates, so that smoothing with a Gaussian ofVeen tWo separate time scales. In fact, the same sum ap-

other kernels has become a standard procedure in data ana zars outside the logarithm, and if one were able to explicitly

sis (see Ref[4] for a review of several regularizing proce- 2€"Ve P(i7}) from p({7;}|s’) there would be no need for
dures. The advantage in using a Gaussian approximation i€ePlicas to evaluatél({ 7).

easier mathematical analysis, which allows for the derivation. In the specific case of distribgti(m),. P({7}) has afunc-
of an explicit expression for the mutual information tional dependence on the configuration of the average rates

[6—8,10. Moreover, at least in the regime of the initial in- {7} and it cannot be explicitly derived except for some
formation rise, the use of a more realistic model leads to th&fvial cases, such as

same mathematical expression for the mutual information,

except for a renormalization of the noigg. This last issue = nio vV s, (6)
will be discussed in more detail in the following section.

_ Let us conside.rapopuliatioq Nindependent cells vyhich where the information is obviously zero, singg{7:}|s)
flre.to a set ofp d!screte stimuli, .parar_'neFrlze.d by a discrete yoes not depend os anymore; or the opposite noiseless
variables, according to a Gaussian distribution limit, where the cells fire at each stimulssalways with a
pattern{ »7} and the configurationsy} across the stimuli do

N
1 : S .
g)= ex — 19)2/252], 1 not overlap. In this case, when the stimuli are equally likely,
p({mHo=11 prra il L T I S ehesb S
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, = I 1 29,2
p({7]|}|s) s{mt—{n), (7 L({7),8) = _<m ES p(s)f l_I[ dnil_i[ e (mi—m) 20
p{nh) =12 s{m}—{n¥), ®

XIn

S psH]] e—[(n?>2+(n?')2—2mn?']/zaz}>
and since the average configuratigng} do not overlap, it s’ ! ”
is easy to see that the mutual information reaches the upper
bound of log p. (14)

In a more realistic context, the average firing rafes} Due to the presence of the sums and of the quenched
are not kept fixed, reflecting the strong variability of the disorder under the logarithm, an analytical expression of the
neural activity detected in real data. Therefore, in order tamutual information cannot be obtained in the general case;
obtain an information estimate independent of a particulaget the evaluation can be performed in some limit cases. We
configuration of the selectivities, the variables’} are con-  focus here on the initial regime, where the number of cells is
sidered quenched and the information must finally be avernot large compared to the noise. The asymptotic regime for

aged across the distribution 6f7}: large population sizes will be discussed later on.
As it has been shown in Rg6], one way to get rid of the
LD = 7D) . (9)  logarithm and to perform the quenched averages and the

sums in Eq(14) is by means of the replica tridi.4]; yet, in
Sty s s the limit when the noiser is very large and the population
<F({’7i})>’f—f dinte({nhF{ ). (10 §izeN is not large, a straightforward and natural approach

o ) ) _ consists of performing a simple Taylor expansion of the ex-
| ({n}) is the mutual information between the neuronal fir- ponentials under the logarithm

ing rates{z;} and the stimulis evaluated according to Eq.

(2), for a particular configuration of the mean rafes}. IS pesH ] e D> )>=2mor 120?
This approach has been followed in R¢%,7], where the s i

replica trick has been used to perform the analytical evalua-

tion. , (77)? (77)?
Let us consider the case where quenched disorder is un- =In 1_2 p(s’) 2| 252 +Ei 252
correlated and identically distributed across units and across s
the p discrete correlates S s s
_E 7i 7 __E 7 7 17 77j)
A . . 2 2 % 4
e =II e(zh=Le(m]"™ (12) Lo oo
N (79)? (772
As already shown in Ref$6,7], it is easy to prove that =D pis) D ——+> —
. . . . . I ; 20_2 ; 20_2
for a population of independent units, the equivocation s

(H({m}|s))s is additive. O gy

By |({7},5) andH({7}) and (H({7}|s))s in the fol- _s m L momnw
lowing, | will implicitly mean the corresponding quenched i o2 29 o
averaged quantities. Inserting Ed) in Eq. (4) one obtains

1 nn
—>2 ps)X ps)Y ————. (15
2 S, S” 1] 0-4

The terms of the order of & must be kept because it can
be shown that after integration dmy;} they will actually
give a contribution of the of order of & to the mutual
] information.

N
(HUmH)s=5 51t n2me?). (12

We turn now to the more difficult evaluation of the rate en-
tropy. Inserting Eq(1) in Eq. (5) and using the equivalence

~(ni= 7} )2120? . . : .
e mmw) Inserting expansiorl5) in Eq. (14) and performing the

In % P(s )l_i[ NP integration on{ ;}, one obtains
1 1
N U 1g)=— 5)2
— - in2m?~3 2_0'2 l{m}9)=1— 202<Ei {E p(s)(7)
/ ' _ ' .S.S
+1n 2 p(s’)H e[27li7lis _(7/? )2]/20'2:|' (13) ES g p(S)p(S )nl 7 >
S i 7
. . . 1 N ’ S\ 2
one can integrate out the second term on the right-hand side =352 > > p(s)p(sH{(%°) )y
in Eq. (13); the result, added to the first term, simplifies with 20° s ¢
the equivocation, Eq12); rearranging all the terms, the mu- —( 7]3773’> ] (16)
7] )

tual information can be written in the following form:
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where we have used the fact that quenched disorder is un- L
correlated and identically distributed across stimuli and neu- (- ﬂﬁs)= 7° cog™
rons.

The averages across quenched disorder and asy@ss : 0 ) o
can be performed distinguishing between the cases’, s whereeg and 97 are sources of quenched disorder, distrib-

#s'. The final result for the mutual information up to order Uted, respectively, between 0 and 1 and between 0 and 2
N/o? reads andm is a positive integer; a justification of this choice on

the basis of tuning curves actually observed in real data is
1 N p-1 provided in Ref[7]. It is assumed that quenched disorder is
l({n},s) = __p_UZ o2=(n?),—(n)? uncorrelated and identically distributed across neurons and
T2 052 p Tnr T NI Ny stimuli
17

The same result has been obtained in R&f.by means of ele=11 e(eh=[e(e)"", (21)
the replica trick. We have checked that the agreement be- he

tween the two approaches is found also at higher orders in

N/o2. Yet the derivation via the replica trick is clearly longer 0

and more complicated, aredpriori less controllable than the e({ 9 =[e(v°)INP=
simple Taylor expansion used here to derive the same results.

The interest in the coding of purely discrete stimuli rises . )
naturally from the need to provide a theoretical framework Equation(19) states that for each discrete correlatach
allowing a direct quantitative comparison with the results ofneuroni fires at an average rate modulating witharound
real experiments. In fact, in a typical experimental protocolthe preferred directior?? with an amplitudez; alterna-
neural activity is recorded from some areas in the brainfively, the average rate is fixed to a valyé, independently
while the subjecthuman or animalis presented a discrete of &, with amplitude . In Ref.[7] it has been shown
number of stimuli, or it is trained to perform a discrete num-that a similar choice for the average rate can effectively re-
ber of tasks. produce the main features of real neurons directional tuning

Yet natural stimuli are multidimensional and some of thecurves.
dimensions can vary in a continuous domain. For example, a The basic definition$2),(4), and(5) as well as the initial
visual stimulus can be parametrized through its colmry-  treatment can be easily generalized to the case of structured
ing within a discrete set of possible choitesd its orienta-  stimuli via the replacements
tion (represented by continuous anglk is therefore a pri-
mary theoretical interest to extend our results to the case
where the stimulus may be multidimensional and the dimen- 2 ps)—2 D(S)f ddp(9),
sions may be discrete and continuous. s S

In Refs.[7,8,14 the coding of movements categorized
according to their directiofcontinuous dimensigrand their nf_ﬁﬂ(f},s),
type (discrete dimensionhas been studied via direct infor-
mation estimates from real data and pure theoretical model-
ing. In particular, in Ref[7] the information between the ()= )e 0.
neuronal firing rates and the movements has been evaluated
in the limit of large noise and finite population size, in the It is easy to show that the mutual information can be ex-
presence of quenched disorder and resorting to the replidessed in a form analogous to E@4):
trick.

In analogy to the model studied in R€T], let us consider | ({#},9®s)

a population ofN neurons firing independently of one an-

other to an external stimulus parameterized by an amgle _ i f f ,
and a discrete variabk according to a Gaussian distribution In2 Es P(s) | dIp(d) H d,

A 19ios
T) ' (20)

o (22)

(23

p({ 7| © s)—lﬂl L exp-{[ - (9.9 1120%) x[] e~tn=mo a1’ ln{E p(s’)J do’
e i=1 \2mwo? T ' i s/
(18 - - -
X [T e {Um@ N+ m( sH2- 209" s")}i20? > _
Such as in Eq(1), #; is the firing rate of thath neuron; i o0
77,-(1‘},3) is its average firing rate corresponding to the stimu- (24)
lus (9,9),

~ — . We use again an expansion of the logarithm similar to Eq.
7i(9,8)=esmi(9)+(1—eg) 7', (19 (15); it is then easy to derive the analogous of ELp):
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1 N linear approximation i, and which consists in retaining all

[({ i} D@8)= 1= Py ES: > p(s)p(s’)f do ';Ee ':ermstﬁf the order df?( %)% o* out of the expansion of
s’ e logarithm.

The final expression, obtained adding the second-order

XJ d9' p(9)p( ) 79,912, 50 contributions to the linear term, E(28), reads in either case
- 1 N(7%%p-1
—(7(9,9)7(9",8)), 901, =103 2| p 2@ AVPoT2LA (A)I(e?),
From Egs.(19)—(22), it is easy to verify that 20 04 [ n_
1 N%(7n")
— —2[2(a— A1)\ ]
- N2 2(462)2| p?
> f dIp(s)P(I([7(9,9)1%),, 50 1 .
S (N\2)? 1 (Zm) 29
=) (A + a’—2aA){e?),+a? p 22m-1] J=o v ' 29
+2a(A1—a)<s> ], (25) 1 N( 0\2 _
¢ corr YU ) P 1 _ 2 2 _ 2
2 =2 102 | p 2(a=Ap) ot 2[A—(A)7]
> 2 p(s)p(s’) J d9dd’p(9)p(9’)
s ’ 1 N2 0)4 -1
s 5 (7)"|p 20 12
~ ~ X<8 >8 - |n2 212 2 Z[Z(Q_Al) )\l]
X(9(9,8)7(9",8)) 4,90 2(409)71 P
2
p_l 1 p; _ 2 ()\2)
=(770)2[(A1_a)2( D <8>§+B<82>s> + b (AN1—N2) D
1 Am—1 2m 4
+a?+ 2a(A— a)(e), |, (26) o) 2|, , (30)
1 (2m 1 (am ; where byl5°"" we mean the information in the correlated
Alz—( ) A2:_< ) a=L (7 cased =9 Vsi _ -
22m\ m 24m\2m 7° The same expression as in E§0) has been obtained in
Ref..[7] by means of the replica trick.
Inserting Eqs(25) and (26) in Eq. (25), one obtains the Figure 1, on the left, shows an example of neuron re-
final expression for the mutual information up to ordercorded in the supplementary motor ak&MA), whose pre-
N/ o2 ferred direction does not modulate with the discrete dimen-

sion (reproduced from Ref.7]). Restrictedly to this dataset,
0.2 such neurons were statistically dominant, even though the
({7} ﬁ®s):iN(’7) p;lz(a—A )252 significance of such observation should be quantified by
e In2 2 p Ve means of the analysis of other samples of cells.

On the right, we show the theoretical curves in the qua-
dratic approximation for the uncorrelated and correlated
casegEgs.(29) and(30), respectively corresponding to the
best linear fif Eq. (28)] of the information as estimated from

In Ref.[7] it has been shown that the same expression fof population of SMA cells. To obtain such an estimate, for

the information in the linear approximation is obtained in theeach value oN, we extracted random subsamples of cells

T : qut of the total population and we used a decoding proce-
g?sierev::zﬁntglie' §preieg§ s, (::e|(t:t:;c;r;lsb(loer;;ti|;ng?(;]\12:jet¥1v£1;h8”re’ finally averaging results across subsamples; details of
“=1,s I L

. .y . X -V V1A 2 the data analysis are given in REE6]. The visual compari-
different contribution to the information would derive in ei- g5 shows that the introduction of correlations in the pre-

ther case from the terrm(9,5) 7(9',s")), 40; yet the dif-  ferred directions improves the fit. Even far from proving that
fering term becomes zero when averaged actbss’. this precise type of signal correlation is the actual mecha-
Settingﬁﬂsz ,f}i‘) V s corresponds to correlating the signal nism used by SMA cells, this result suggests that real cells
that each neuron carries about different stinsulintuitively, ~ transmit information firing in a correlated way.
since no difference in the preferred orientation can be de-
tected any more while looking at distinct correlatgsone X
would expect an information loss. Such a loss is indeed thresholded-Gaussian model
present, as revealed from a detailed evaluation of the qua- Till now we have examined the information carried about
dratic contribution in the population si2¢ We do not report  stimuli characterized by discrete or mixed continuous and
the calculation, which is a trivial application of the perturba-discrete dimensions, assuming that the firing of different
tive theory very much similar to the one performed for thecells is independent across cells and Gaussian distributed.

+2[A— (A)*(&?), |. (28)

B. Coding of mixed continuous and discrete stimuli with a
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No.of cells

FIG. 1. Left: directional tuning for a cell recorded in the right supplementary motor area of a monkey performing four different types of
arm movement. Unilztunimanual left, UniREunimanual right, BiSym+bimanual symmetric, BiOppbimanual opposite. On the axis
angles are in degrees; reproduced from IREf. Right: comparison between the theoretical information curves corresponding t¢2Bgs.
(lin in the legend, (29) (quad, (30) (quad cory, and the information estimated from a sample of cells recorded in the right supplementary
motor areqd 16]; m=1, p=2, the distributiong (&) in Egs.(21) is just equal to 1/3 for each of the three allowed values &, 1/2, 1;
(5°20)?=0.64.

Yet, as already remarked, both assumptions provide a rough
approximation of the firing distribution of real neurons. The
most unjustified one seems to be the Gaussian assumption,
since it implies that also negative rates have a nonzero prob-
ability of occurrance;a priori the information rise might
result more or less seriously distorted. In Ref.[7] the mutual information ({ ;},9®s) has been

This question has been investigated in R&l, where a  evaluated by means of the replica trick, in the limit of large
more realistic model has been proposed, truncating theoisec. The interest in this limit arises since the largeis,
Gaussian distribution and addingdgpeak in zero. the larger is the Gaussian weight assigned as a whole to

Let us consider once again a population of independentegative rates; a consequence might be a larger distortion in
units firing to mixed continuous and discrete stimtii® s, the information values.
where the single neuron distribution is written as follows: We show here how the same results can be obtained with-
out the use of the replica trick.

As usual, the information can be expressed as the differ-
ence between the equivocation and the output entropy, analo-
gously to Egs(4) and(5) and considering replacemen3).

In Ref.[7] it is shown that the equivocation can be calculated
quite easily as a sum of single neuron terms; assuming as
usual that quenched disorder in uncorrelated and identically
distributed across stimuli and neurons, according to E§3.
and(22), one obtains

1 X
erfix)=—| dte "2

V2]

(32

P(nilﬂ!s):

1 -
Wexp_{[ i~ ﬂi(ﬁys)]z/Z(Tz}@(?]i)
+2{1—erf 7(9,8) a1} 8(7)O(— 7y),
(3D)

0(x) is the Heaviside step function ang(9,s) has already
been defined in Eq.19). erf(x) is the error function:

N (9,5) - o s
H({ - | 2 ~ . 7 [7(9,9)]2/20
(A} 9.9))0.5 52| [T In@ma?) Kerfl 7(9.8)/ o). < \2mo ¢ >g,ﬂo

+2([1-erf{7(9,5)/a}]).. 40 In§—2<[1—erf{%w,s)/o}]ln[l—erf{%(a,sﬂo}pg,ao} . (33
where we have used the representation ofdHanction

+o €l2 1
dxS(X)F(x)=lim J deF(x).
—o0 —€l2

(34)

e—0
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The equivocation diverges when-0, but, as we will show later on, this divergence is canceled exactly by a corresponding
term in the entropy of the responses, yielding a finite result for the mutual information.

The average across quenched disorder can be performed in the limit oflargkexpanding the error functions in E83)
in powers of 16. First, we evaluate the entropy of the responses, since we will show that there is a partial cancellation of
terms.

Considering Eq(5) for the entropy of the responses and replacem@3s it is easy to show that in the case of distribution
(31), one obtains

H({m}>=—<§ p(s)f dap(mf H dml_i[

= 7i(9,9) 1220710 (7))

1
WEXP—{[M
Z fdﬁ’p(ﬂ’,s’)]?[

1

+(2{1—erf 7;(9,5)/ 01} 8( 1) O (— ;) ]log, exp

’ITO'2

> | @
e,90

Developing the products on the neuron indeand taking into account the symmetry in the distribution of different units,
Eq. (35) can be rewritten as follows:

—{[ 7= (9,8 1%125%0 () + 2{1—er (3" ,s") o1} 5( 7)) O (— 7y)

k

N N » K
H({m}>=—<§ p<s>fdap<a>kzo(k)jo i[[loln. H dr L1 =

—wi=k+1 i= 270

N
xexm{[m—%i(a,snzlztrz}zN‘ki_l;[H{1—erﬁi(ﬂ,s>/a]}5(m)logz{Z f dd'p(d',s')

k N
1 ~ ~
x| 11 sexp—{[ ni—m(0',s) P20 2N % [] {1—erf[m(ﬂhs’)/o]}a(m)) . (38
i=1 \2mTOo i=k+1 90
where we have used the following conventions:
k
IT x=1 if k=0, (37)
=1
N
IT x=1 if k=N. (39)
i=k+1

Extracting from the logarithm all the factors which do not dependigmand integrating them ofw}, it is easy to show that
the entropy of the responses can be expressed as follows:

N

N}k
Hinh-3 | dapws){E( )2m2<1+|nzmz><erf[n<ﬁs)/a]>£ gol L—erl 7(9,8)/ o)) 38

N—k N[N}k
+2 o IN(el2)(erl 7(9.5) o)y yo(1-erl 7(9.5) o), ﬂ0+2 >3

N
><<7;2(19 s)la?erf] 7](19 s)lo]),, 1s\o(en‘[n (9, S)/‘TDS 190<1 erf| 77(19 S)/‘TDS 190+ 2

N\ k
21n2

X (9(9,8)\2mae” T2 o(er (9,8) o 1)< so(1—erl 7(9,9)/a])N b

N N . k k 1 5 , , N 5
—<§ fdﬂp(&s)kEO(k)fmljldmi:Hl oo m(9.9)120 P {1-erflm(9.s)/01}

k
X logy| 2, fdl‘} p(d',s )(H ext 2y 7i(9',8')— 7{(9',s /202] H {1—er7(9',s )/0]})l> ,

5,190

(39
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where we have used equalit§4) and we have assumed that quenched disorder is uncorrelated across units and stimuli.
Subtracting the equivocation, E@3) from the entropy of the responses, E8D), it is easy to see that after summation on
k, the first two terms in Eq.39) simplify with analogous terms in E¢33), so that the logarithmic divergence fer-0 cancel
out.
Finally, the mutual information can be rewritten as follows:

N n(d,8) _ -~ 2/p 2
¢ | ¢ . [7(9,9)]2/20
[EIREDEDY Jdﬁp(ﬂS) o ([1—erf{7(9,9)/ o} In[1—erf{7(9,5)/ 0} 1), yo+ i <\/_0'e L >ﬁ
N 2(19 ) N (N) ® K K 1
+2|n2< o? 61[7](195)/0']>8ﬂ0]_<25 Jdﬁp(ﬁ,s)go K oﬂldmil:[l ZWozexp

k

N
~{Lm=m(9,9720% 11 {1-ern(9,9)/o]}ogy 2 p(s') f dﬂ'p(a»(iﬂl exp{ 277, 7i(9',5')

N
—7,%(0',3’)/202]_1;[ {1—erﬁ7;i(ﬁ’,s'>/a]}”> : (40)
i=k+1
£,90

Equation(40) constitutes the final expression for the mutualand the binomial sums in E¢40) can be performed. Details

information in the general case. To proceed with the analytiabout the evaluation are given in Appendix B.

cal evaluation one must now resort to some approximation. Finally, the mutual information can be written as follows:

As suggested in Ref.7] in the limit when the noiser is 1N 1

large, one can expand the error functions in E): ({7}, 008)= In2 ( T = Es: E p(s)p(s’)
S!

1
erf(x)= S+ =%t o(x?). (41)

F « f do j 49" p(9)p(9) {7,512, 50

A Taylor expansion can be performed also for the expo- —(1(9,9)9(¥',S")). 0]
nentials under the logarithm. One has 02
1 (1 1\N(°
T

S Pt A2.2
_|n2 2 2(&’ Al) O,

‘ ~ 407 p
log, E fdﬁ,p(ﬂ/’sl) i]:[leXFIme(ﬂ’,s’)
S N +2[A— (A)*(&?), |, (43)
_%i(ﬂ’,s’)ZIZUz]izllrl {1—er1[77i(ﬁ/,sr)/a]})] where we have used E¢®5) and (26) andAy, A,, anda

have been defined in EQ7).
k (ﬁ, s) This result equals the expression obtained using replicas
E 7, in Ref.[7], showing that even with a more complicated dis-
= tribution, other than the simple Gaussian model, the evalua-

tion can be carried out via a simple Taylor expansion of the
"i;iz(ﬁ’,s’) 1 & 7; ﬁj%i(a’,s')}j(ﬁ',s')) logarithm, and no significant advantage derives from the use

=log,

> p(s')f d9'p(9")| 1

k

-2

of the replica trick in the limit case of large noise.

=1 207 2= o c . . .
omparing Eqgs(43) and (28) one can notice that limit-
( N 2 7(9,s) edly to the case of large noise, the effect of thresholding the
% - \['— Gaussian distribution with respect to the information is
2N~k i-kt1 V7T O merely a renormalization of the noise for a factor of

1/y1/2+1/7. In Ref.[7] it has been shown that this renor-
(42 malization effect holds at higher orders ins2/

1 (9,8 7(V',S
+_2 7i( )ZJ( )
T i#] o

Ill. POPULATION INFORMATION IN THE ASYMPTOTIC

. . REGIME OF LARGE N AND SMALL
Developing all the products one can expand the logarithm v

again in powers of X, very much similarly to what has We turn now to the analysis of the asymptotic regime in
been shown in Eq.15). The result is then integrated ém;} the information curve, for a large number of neurons. A first
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attempt to solve this limit in the case of independent Gauss-

ian units and discrete stimuli, as in Ed) has been done in 3
Ref. [6] by means of the replica trick. Yet, probably due to
some too strong approximation in summing on replicas, the
final analytical expression was incorrect, according to the
authors.

The asymptotic behavior was then studied in R@f.dis- 3
tinctly in the case of discrete and continuous stimuli, and for g
a generic distribution of independent units, yet in the absence= 4 5|
of additional quenched disorder. We try here to go further
and study the case where quenched disorder is present, as
distribution (1), and mixed continuous and discrete dimen-
sions characterize simultaneously the stimulus structure. W

250
/

¥ .

1H

focus first on the simpler case of purely discrete stimuli. In 0.5 o °:=0'5

this context, we compare an approach which is equivalent in r 0=07

the nature of the approximation to the one presented in Ref . . . . . - o08]

[6], yet replica-free, to the approach presented in Ref. 5 10 18 oy ® 30 35 40

We show in detail under which approximation the two ap-

proaches provide the same result. FIG. 2. Mutual information as in Eq47), as a function of the

population sizeN. Different curves correspond to different values of

A. Coding of discrete stimuli in a Gaussian approximation the noisec; circles are for the information with only the leading

term of the order ofeN in Eq. (47), while stars are for the full

Let us reconsider Eq14). Wheno becomes very small | _ ) '
information with also the correction term of the orderaf

the probability density(7;|s) can be approximated by &

function: . . . . L
- In the Appendix, we show that inserting this expansion in
e~ (ni—m)120 . Eq. (45), one can perform the quenched averages and derive
TH& 7= 7). (44 an explicit expression for the mutual information. The final

result reads

This approximation, which corresponds to freezing the

quenched disorder represented by the variablg$ under N

the logarithm, has been used in RE] after getting rid of |({m}.8)=log; p| 1 Iog D |n2[sl( V2maly)

the logarithm itself by means of the replica trick. Under this

approximation, the integration dm;} can be performed and _

the mutual information can be rewritten as follows: (P=2)S,(2m0"1)"] |, (47)

1
|({ni},5):—ﬁ<§; p(s)in
xI1 e(n?n?')zlzazb

E p(s") where we have considered the leading term of the order of
s’ and the first correction of the order of, and one has

* (_l)k+l * (_1)k+1
| 1 < 7 Sl:gl N2+ L Szzkzl KNz
=log; P~ 7 { 2 p(s)
xin| 1+ > I e—(ms—n{sl)z/&fzb . (45) |1:fd7792(7l)' |2:jd7793(77)- (48)
s'#s |
"

When the noise goes to zero and the population size is large,
the information reaches the upper bound of,lpg

Figure 2 shows the mutual information according to Eq.
(47) as a function of the population size and for different
values of the noiser. Circles and stars are, respectively, for
the full mutual information with both the leading and the

where upper bound Igg derives from the term witls=s’
in the sum ors’ and we have used(s)=const=1/p.
Sinceo is small one can expand the logarithm

1+ S [] e i)

In

s'#s ! correction terms in Eq(47) and with only the leading term
s s o of the order ofo™. As it is evident from the plot, the larger
=> ] e n—m)0e +3 o, the slower the approach to the ceiling and larger the
s'#s ! weight acquired by the correction term of the orderodt.
s oo s oo An alternative replica-free method to study the asymptotic
x> X [ e ni=m)Tete=(=n)%20% 1 .. information regime has been proposed in H6f. In prin-
s'#s s"#s 1 ciple, the method looks quite efficient and, moreover, it can

(46)  be applied both to continuous and to discrete stimuli.
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Yet no additional quenched disorder affected the distribu-

tions considered in Ref9]. We try now to apply the method
to our particular coding scheme.

Let us reconsider Eq2) for the mutual information. With
a change of variables, it can be rewritten as

l({m},s>=—2s p(s) | I dXe(p({Xs})), log,

s'#s

X

> p(s')exp(xsa}, (49

X/ In

_1 p({ﬁiHS'))
"N

p({7i}ls)

1 ! !
=N > (pi— ) (g + gy —2m)/20%, (50)

o= [ atmiptinils) T oXe—Xa(n} 55
s'#s
s

where in deriving the explicit expression fof;, we have
used distributior{1). This change of variable allows to move

PHYSICAL REVIEW E68, 031906 (2003

Z| -

Z (9 — n})?120°

== [ dtmpdintoxs ()5

1 itls’
:_f d{m}p({m}IS)N'”<%i}}||ss)))

1
=—NKL(S l|s), (54)

whereKL(s'||s) is the Kullback-Leibler divergence between
the distributiongp({ %;}|s’) andp({#;}|s). Thus, under this
approximation, the distributiop({X:}) factorizes into a
product of 5-functions centered on the mean valueXaf V
s’

Inserting Eq.(53) in the expression for the mutual infor-
mation, Eq.(49), it is easy to show that integrating ¢X}
one reobtains Eq45). Thus, approximating the variables
{X¢} with the mean of the distribution, as in EG3), cor-
responds to thé-function approximation, Eq44).

A more accurate estimate might be obtained calculating
the correction given by the second exponential in &2
that we had previously neglected. Yet, integration{dm}
would lead to the introduction of matrices which depend on
the quenched disorddr;’}, which therefore must be aver-
aged out first, in order to derivgp({Xy¢})),. The average

the quenched disorder from inside the logarithm to the dismight be performed specifying the distribution of the

tribution p({Xs/}).
Using the integral representation for tldefunction and
integrating on{ %;}, Eqg. (51) can be rewritten as follows:

dYs’ 1 ,
pxoh = 11 ﬁexr( S PIES

s’ #s

Y ’ Y JI
—7)%120% ) IT I1 exr{ - WSWS >
s'#s g'+#s |
X (8 =)~ 77?)/202)- (52)

We notice that wheiN grows large and- becomes small, the
argument in the second exponential is of the order &f 1/

with respect to the first one: a relatively flat Gaussian is

multiplied times a strongly oscillating periodic function.
Thus, we put the second function equal to 1 obtaining

1
p(iXah) = 11 o\ Xt G 20 (nf = #))%1207 | (83)

s’ #s

We notice that

quenched disordep (7), but even in this case, integrating
out the variableg»’} introduces a nontrivial dependence on
the variables{Ys} which in turn can be integrated out by
means of further ansatz. Details about the evaluation of the
correction and of the results will be published elsewhere
[27].

B. Coding of mixed discrete and continuous stimuli:
Gaussian vs thresholded-Gaussian model

As we have shown in the preceding section, in the large
limit both the technical evaluation and the final expression
for the mutual information are formally the same whether the
stimuli are discrete or continuous. On the other hand, in the
asymptotic regime of smali a qualitative difference exists
between the case where the stimuli are discrete or continu-
ous, in that in the former case the information is bounded by
the entropy of the stimulus set, while in the latter the infor-
mation grows to infinity as the noise goes to zero, or if the
number of neurons grows to infinity for a finite noise. Here,
we calculate the expression of this asymptotic growth, which
corresponds to the upper bound in the case of purely discrete
stimuli. We compare the two cases of Gaussian and
thresholded-Gaussian models, in order to assess whether, as
in the largeo regime, a plain relationship such as a renor-
malization of the noise links the two expressions.

Let us reconsider distributiof18). The expression for the
mutual information is given by Eq24) that we recall

031906-10
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({7}, 9®s)

1
‘<m§ p(s)fdﬂpmf IT d»
x[] e tn-msn%20 In[E p(s’)f do’

x[1 e{[Zi(a,s)]2+[7n(a',s')]2zm;i(a',s')}/z(ﬁD
I £,90

(55

In analogy with approximatior44), in the limit wheno
becomes very small, we use

e~ [ni—mi(9.9)%20?
(56)

— 8(ni—1i(9,9)).

27’

Under this aproximation, we obtain in analogy to E4p)

1
I({ni},0®8)z—ﬁ<§ p(s)f dop(9)in

X2 p(s')fdﬂ'p(ﬂ’)

x[] e [n("sh-m(2.9)1%20?
I

>ﬂ0,s

In the preceding section, we have seen that in the case
p purely discrete stimuli, the upper bound jqgwas given
by the term withs=s’ under the logarithm. Therefore, in the

(57)

case of mixed continuous and discrete stimuli, we expect the

same term, after integration a¥, to give the logarithm of a
coefficient depending on the ratio betwegrand o, which
grows to infinity wheno—0. Let us extract and calculate
the term withs=s’ out of Eq.(57):

f do’p(9")p(s)[] e nt7" 9 n2 1 5

It is clear that wherr becomes small the major contribution
to the integral comes from the valuds= 9. Therefore, we

expand the difference;(9',s)— 7(9,5),

PHYSICAL REVIEW E 68, 031906 (2003

Jmi(9',9)

!

(V' ,9)— 7i(9,9)=

0

%g sin(9—9°) (9" —9),

(59

where we have explicitely used expressidh8) and (20).

In the limit wheno—0 the resulting Gaussian distribu-
tion is approximated with & function and the integral on
dd' can be performed. Extracting this contribution out of the
logarithm, the information can be rewritten as follows:

p\m \/—7/
I({n},9®s)=log, ( +2 fdﬁp(s 9)
1 1 _
><<§Iog2 N E. (eD)SinP(9— 97 >ﬁo

m2<2 p(s)f d9p()in| 1

D2sir(9— 909 >,

s'#s

Xf do'[1 e—[7”(19’,s’)—?;i(ﬁ,s)]z/zozl>
1

n
(60)

The quenched average in the second term can be performed
in the thermodynamic limit letting the average pass the loga-
rithm in a mean field approximation. The third term behaves
like log,[1+A], whereA vanishes likeyN/ o exp(—N/d?)
when o—0. The information in the leading term can be
finally expressed in the following form:

of
[(£%),
5 ) (61

When the number of neurons grows to infinity and/or the
noise tends to zero, the information grows logarithmically to
infinity. Notice that the case of purely continuous stimuli can
be retrieved by taking=1: not surprisingly, the continuous
dimension plays a major role in determining the asymptotic
growth of the information to infinity, with a relatively mild
modulation according to the numbgrof discrete correlates.

We turn now to the case of the thresholded-Gaussian
model, Eq.(31). As we have shown previously, the mutual
information can be expressed as in E4Q). In the limit of
small o, we apply approximatiofb66). After a rearrangement
of the terms, we obtain

py YN7°
J2

|({7li},ﬁ®5):|092(

(o
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N - ~
I({ni},i}@s)zES fdﬁp(ﬁ,s) m([l—erf{n(ﬁ,s)/o}]ln[l—erf{r;(ﬂ,s)/a}])s‘ﬁo

78 =y 202 N [ (88 -
+In2<\/_0_ 7 2 +2|n2 = erfl n(9,s)/ o] .

e,90

NNy N K :
_<§S) Jdﬁp(ﬁ,s)go(k)i_lg {1- erf[nl(ﬁs)/a]}[z nz

+log,

k N
2 p(s/)f d”&’p(’ﬂ’)( Hl e*[{;i(ﬁ"S’)*’;Ii(ﬁ,s)}ZIZU-Z]l ];[ . {1_erﬁ%i(ﬁ,,5,)/0]})l} >
s i= i=k+ o0
(62)

Out of this expression, we aim at keeping the leading terms, which diverge avigees to zero and determine the asymptotic
behavior. In the first approximation, we will neglect terms going to zero wijtiwhich would play a role in the first correction
to the asymptotic value. As already done in the case of the of the Gaussian model, we consider the tefrm sviththe
discrete sum under the logarithm. Looking at the function to be integrated’ pit is easy to see that the product of tke
exponentials is maximal for values &f close to®), while each one of the othét—k factors containing error functions is
maximal for cell and stimulus specific values®f, namely, the ones corresponding to the smallest valueg(df',s). Thus,
the main contribution for the integral comes from the value® btlose tod and we can repeat the procedure as in E5@).
and (60), obtaining

([1 erf{7(9,s)/ o} ]In[1—erf{ 7( I, S) o}])e ot = 2< 7(9.9) [77(13,5)]2/202>

[({m}, d@s)= 2 jdﬁp(ﬂs) N

e,90

N [ 749,s NNy N -
< (d,8) _<25 fdﬂp(ﬂ,s)z (k)i_]ll{l—erf[m(ﬁ,s)/cr]}

k=0

erfl (9, s)/a]>

£,99]
o k s eV ke 1
) 00, 2 o | 5'0%

1 k
EZ (9)? SIM(D— ﬁ?s)}

0

J—

k
\/2 ey)? sinf(9— 97

} > . (63
e,90

Performing the sums dkand taking the limit of smaltr, it is easy to show that all terms simplify or vanish with higher orders
in o, except for the second and third term in the sumkoihe third term can be evaluated in a mean field approximation
passing the quenched average under the logarithm: Biicgery largek is also large for most values. The leading asymptotic

term finally reads
l({m},ﬂ®5)zlogz( pf N e

N—-1 N
xgl( )(1 erf 7:(9,9)/0])) ﬁo log,

+ }k) log,{1—erf[ 7,(9,5)/ o]} +log,| 1+
i=k+1

N

k
x 3 J da'(H e (" s =m(2.9)%2s% T] {1—erf[771(1?’,8’)/0]})
=1 i=k+1

s’ #s 1=

2 f dop(9,s)

pym kn®  [(e7),
5o V3 ) (64)
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—%— Gauss
—+ th-Gauss

ki —% Gauss
—+ th-Gauss
. . . 1 . . 1 1 )

. ) . . ,
1 10 20 30 40 50 60 70 80 ) 100 0.01 0.02 0.03 0.04 0.05
N c

FIG. 3. Information for the Gaussian vs thresholded-Gaussian model with mixed continuous and discrete stimuli, accordifgp Egs.
and(64). n°=1, p=4, @=0.2, &} can take values 3/10, 6/10, and 9/10 with equal probability. Left: asymptotic behavior as a function of
the population siz& for o=0.01. Right: as a function of the noisefor a population size oN=5 cells.

Since the first term is exactly the information for the Gaussthough in real experiments performed on trained animals the
ian model, Eq(61), we see that already at the leading term,stimuli always vary in a discrete set, since even continuous
the rise to infinity withN is slightly higher for the thresh- dimensions are sampled on a finite number of points, in na-
olded Gaussian model. It is quite difficult to extract analyti-ture the real brain must learn how to discriminate highly
cally the exact dependence dhand o from Eq. (64). We  dimensional stimuli or behavioral correlates, whose dimen-
have evaluated the sum dnnumerically by means of a sions may equally be continuous or discrete. For our specific
MATLAB code. model, we have been inspired by the data recorded in the
Figure 3a) shows the mutual information for both models motor cortex of monkeys performing arm movements which
as a function of the population size. It must be said that whilamight be parameterized according técantinuous direction
Eq. (61) is valid for generic values of the parameters, pro-and to a(discrete “type” [15,16, We have focused on two
vided the noise is small, more restrictive assumptions undeiyossible limits, namely, the limit of finite population size and
lie the derivation of Eq(64). In particular, one has to ex- |arge noise, which corresponds to the initial information rise,
clude the values for which the tuning curvg(#,s) is  and the asymptotic regime of large numbers of neurons and
identically zero[namely, «=0 and ;=1 with a finite  small noise. The limit of large noise has been recently stud-
weight in Eq.(19)]; the reason is that for very small values ied in Ref.[7] by means of the replica trick. Here, we have
of the noise, the weight of thé peak in distribution(31)  shown that regardless of the structure of the stimulus
becomes proportional té(7;(9,s)), and several terms in whether continuous or discrete, the same results can be ob-
Eq. (63) cannot be neglected any more. tained without resorting to the replica trick, by a mere ex-
Moreover, for any fixed value oN there is an upper pansion of the logarithm. Moreover, we have shown that
bound on the value of the noise, beyond which approximaeorrelations introduced in the preferred orientations of each
tion (61) must be integrated by the neglected terms. This cameuron, across different values of the discrete parameter, can
be seen by direct analytical evaluation of each term. increase the redundancy, depressing the information. This is-
As an example, we show in Fig(l9 this effect for a sue is biologically relevant since in several cortical areas
population of five cells: for values of close to 0.05, the neyrons show a tuning for the direction and, in particular, in

decrease in the information for the thresholded Gaussiafhe gataset analyzed in RéL6] such correlations were in-
model starts slowing down, and for higher values of thejeeq observed.

noise, the information would even increase. Modifying accordingly the theoretical model did improve

the fit of real information curves, suggesting that the corre-
lations detected in the data are information bearing—here, in
a negative sense, they depress the information content.

We have presented a detailed analysis of the mutual infor- We have been able to study analytically the asymptotic
mation carried by one population of independent units abou@Pproach to the upper information bound with purely dis-
a set of stimuli, examining both the case where the stimulfrete stimuli, always without replicas, calculating both the
are purely discrete and the case where they are characteriztaiding term of the order o™ and the correction of the
by an additional continuous angular dimension. In fact, everorder of o?N. We have shown how to retrieve our results

IV. DISCUSSION
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using a different approad®], always replica-free. This ap- 1
proach does allows to go beyond our original approximation. | ({#%i},s)=10g, p— ﬁ< z p(s)
Yet, in the presence of additional quenched disorder as in the
case of our specific model, further assumptions are necessary
to proceed with the analytical evaluation of the correction. A X
careful analysis is still in progress and will be presented else-
where[17]. L
Flna_lly, we have evaluateql the asy_mptotlc mform_atlon i 2 p(S)E 2 . z
value in the presence of mixed continuous and discrete n
> N
7

ST e(n?n?')zlzﬁb
7

s'#s |

. (A1)

stimuli, which grows to infinity when the noise goes to zero .
and/or the number of neurons becomes large. We have found =S (5= )220
that the information grows to infinity logarithmically wit x\exp =2, (r=m)leo

and with the inverse of the noise for the Gaussian model,

while the exact .dt_apendence for the threSho.lded'Gal.JSSia\Dhere we have used the fact that quenched disorder is un-
model is more difficult to detect. _Under certain COnd'.t'cmscorrelated and identically distributed across neurons and
and for very low values of the noise, the asymptotic 'nfor'stimuli.

mation is higher for the thresholded-Gaussian model than for \yhen o becomes very small one can use the following
the pure Gaussian.

This result is quite interestinger se but we refrain from

approximation:

any speculation leaving its interpretation to a more careful (- 2202 [ s s

evaluation of the information. In particular, it will be inter- € —N2ma S ). (A2)
esting to evaluate the impact of the corrections neglected in ] ) .

Eq. (63) [17]. Let us reconsider the term with=1 in Eq. (Al):

It must be said that the validity of our results is not
checked here by means of numerical simulations. In a previz (e~ (7"~ ”s1)2/202>N
ous work[8], we have shown and discussed in detail thats%s K
since information is a very sensitive measure to limited sam-

pling, in our specific case of a continuous rate model with | 2 (\/EO_)N[f dysd7si0(s)e(sy) 8( 75— 7%) "
additional quenched parameters, the numerical evaluation re- S

sults extremely hard, especially in the most interesting limit N

of large population sizes. The simulations presented in Ref. = (p—1)(\/270)N f dno?(n)| . (A3)
[8] could be carried out using a decoding procedure which is

meant to reduce the bias. Even so, the agreement with the

analytical results was found only for a population size of Therefore, this term gives a contribution of the Ofdf?ba’f
maximum two cells, the curve deviating due to the distortion It iS €asy to check that at each orderthe term withs,
caused by decoding for larger population sizes. We are cur=S2» - - - »= Sk# S gives a contribution of the order of': in
rently working in order to improve the numerical techniquesf@ct: While for a generic choice @4, s, . .. S, out of thep
and obtain a better check of our analytical results for most ofO'relates one has finally sevez@functions each of which,
the parameter space. Nonetheless, we think that the wide _cor(_jmg to Eq(A2), carries a_factor Of.f' when all the
established difficulty in getting accurate numerical informa-; timuli are equal onLy oné function remains and the result
tion estimates with models of this type makes our analytica|S Of.the. order ofg™. Therefore, one ha? _to sum all .th'e
efforts and the results presented here even more remarkab c_>ntr|but|ons fo calculate the exact coefﬂqent determining
e asymptotic approach of the information to the upper
bound. For a generic orddrin the expansion of the loga-
rithm, one has
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APPENDIX A: THE SMALL ¢ LIMIT IN PRESENCE OF N 2
X(+ .
PURELY DISCRETE STIMULI (V2mo) fdne () (Ad)

Let us reconsider Eq45). Inserting expansiof46), one It is now clear that to obtain the contribution at all ordkys
obtains one must sum the series
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- (_1)k+l (_1)k+1
Sl:k:1 KN2+1 (AS5) K S1#S Sp=S3, ..., =5#5,5;
k N
X < ex;{ — > (55— 7%)2202 >
and the final contribution to the mutual information up to =1 ,,

ordero™ can be expressed as follows: (—1)k+l

LV S S (e

S1#S Sp#5q,S
(P—1)S,(V2Zmal PN, I,= f dno¥(n).  (6) x e~ (DO =7 DH2ot)N, (A8)

A ¢ function is introduced according to EGA2) for each of

the two exponentials in EqA8); since one hak possible

Inserting Eq.(A6) in Eg. (A1), one obtains the expression of choices for the stimulus which is different from the otlker
the asymptotic approach to the Cei|ing up to orddr —1, the final result must be multiplied times a factorkof

more; finally, one has
-1 k+1
D o 1)(p-2)2med fdne%n)
————[S,(\2mol ﬂ“]} (A9)

(k— 1)N/2
(A7) Summing all terms at any ordkythe total contribution order
o?N to the mutual information can be written as follows:

N

|({77i}13):|092 p|1 Iog pln2

s}

This result can be easily extended to higher powers.of _ _ 2] \N ( 1)
The first correction of the order af?N to the leading term (P=1)(p=2)S(2ma™l2)%, 5= 21 I
can be calculated through the same technique. Since at the
kth order in the expansion of the logarithm the facidrwas |,= j d7no3(7). (A10)
obtained considering only the configuration where all the

stimuli sy, ... ¢ are equal, it is clear that each configura- |nserting this result in EqA7), one obtains the final expres-
tion where aII the stimuli except one are equal will generatesjon for the mutual information up to order™, Eq. (47).
a factor ofo®N; in fact, if, say,| stimuli are different from

one another amonig one will have to introduce & function APPENDIX B: LARGE o LIMIT FOR THE
for each of thd exponentials, according to E¢A2). Let us THRESHOLDED-GAUSSIAN MODEL
see in detail theékth order contribution, assuming, for ex-

KIh Let us reconsider Eqs42). Developing all the products
ample, that all stimuli are equal exceqt one can expand the logarithm in powers ofr1/

k

103, 7 77.(19’3) ﬁ 7i('8") gﬁ nm,»%iw',s')"&;j(a',s'))
= 2i5=

2 0_4

= 20

1 N 27(9,8") 1« (.S (Vs
[ 3, YR R

i=k+1 i#] )
k k N ~
77.(19’ s) PAGERS N \Fm(ﬁ',s’)
3 " -3, 2N

|092[2 p(s')J d9'p(9")| 1

1
==(N-k)+ 1+§ fdﬂ’p(f}',s’) 2 >z Dy -
18 (s p(9,s) 1o m(0,s)p(9's) h 2 (0, s')%jw',s')
1 Koams) & (ﬂ’s) 2p(9',8")
==(N=k)+ SZ fda'p(a’, ' 2 g 2 » +1 -

k ~ ~ ~ k N ~ ~
mam(9, s (9',8) 1« m(¥,8)7(9,8) \Fw(ﬂ',s’)m(ﬁ',s’)
> =P 2 2. N5

l
2IJ1 0'4

o =1 j<k+
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k ~ ~ ~ ~
1 . . ) ﬁ/,sl ) 19_//'5/[ 2 _ﬂ/,sl _ﬁ//,SII
= d9'do"p(d',s")p(d",s") 2 77|77177|( )77]( )+_E 7i( )771( )
2.7 i o T {7 o2
S 2,8 797,87
EE\ﬁ"’3"), (B1)
=1 j=k T o

where we have kept only the terms which will give a contribution of the order @t id the information.
This expression has to be inserted in E¢0) and integrated ofi7;}. One obtains

= 7(9,9)}2125?]

N N . k k
(3 Joomon 3, (3] [ oall et

k

N
x 11 {1-ern(9,9)/oltlogy 2 p(s') J da'pw')(izﬂl ex 2 mi(9',8') = 7i(9',8')1207]

N
><i:1;[+l {1—erf[77i(1§”,s’)/cr]}) D
8,190

~ > | dodd’'d9"p(s,9)p(s’, 9" )p(s", ") 2( )(N k)(er 7(9,9)/ o)X 50

s,s',s"

- NNy koL - -
X(1-er7(9.9)/a]) 5~ 3 ( k)ﬁ(n(ﬂ,s) 7(0',s") a%erl 7(9,5)/ ), golerl 7(9,5)/al)s yo(1

- SNy ko . - -
—erl7(9,9)/0]) 50— % ( k)mww',s')/ﬂae T solerl (0,801 b1 el n(9.5)/ o)) 8

T
L
=~ z
-z
-

8,8’ ~ ~
W\/;<—n( )[1 erf{n(ﬂsla}]> (erl[ 7(9,9)/ 1) so(1—erf p(9,9)/aT)h 5o *

8,1‘)‘0

N Kk ;](’&/,S/);](’&”,S”) ~
5 erfl n(%,s)/ o] (erf[n (9 s)/a])g ﬁo<l erf[ (9, s)/a])g 50

g
&,90

N-1 N N—
+ (k)wmzww's)n(ﬁ" $") o[ 1—erf{7(9,5)/a}]). poler 7(9,9)/ o))k yo(1—er 7(9,9)/ o) 672 |,
(82)

where we have assumed that quenched disorder is uncorrelated across neurons.

It must be noticed that the terms of the ordeiN3fappearing in the expansion of the logarithm, Egfl) do not appear in
Eqg. (B2) any more: it can be easily shown that after averaging across the stimuli they cancel out.

The sums ork in Eq. (B2) can be performed and the result is then inserted in the expression for the mutual information, Eq.
(40), which finally can be rewritten as follows:

() 929-3 [ dop(o.9) (L el (0,9 o} In[ 1 er{7( 0,5/} o

N | 7%9,9)
2In2

erf[?,(ﬁ,s)/a]> +N([1— erf{%(ﬂ,s)/o}ps,ﬁo]

e,90

— > | dddd’'dd p(s,d)p(s’, 3 )p(s",d")

S,S, ’S!l

93,8)n(9',s ~
In2<% rf[n(ﬂ,s)/o]>

£,90

031906-16



REPLICA-FREE EVALUATION OF THE NEURONA . .. PHYSICAL REVIEW E 68, 031906 (2003

N [ 78 ,s)n(d"s") - N 2] 0.8 _
_2|n2<7’( UZ( erf[n(ﬁ,S)/cr]> —m\/;<n(—[l—erf{77(ﬁ,s)/a}]>

3
o

e,90 e,90
N [ (9,8)7(9",s") ~
- [1—erf{n(9,s)/c}] (B3)
7In2 o2
e,90

Using expansiori41) for the error function and keeping only the terms up to ofdéw?, one arrives at Eq43).
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