
PHYSICAL REVIEW E 68, 031906 ~2003!
Replica-free evaluation of the neuronal population information with mixed continuous
and discrete stimuli: From the linear to the asymptotic regime

Valeria Del Prete
Department of Mathematics, King’s College London, Strand WC2R2LS, London, United Kingdom

~Received 23 January 2003; published 11 September 2003!

Recent studies have explored theoretically the ability of populations of neurons to carry information about a
set of stimuli, both in the case of purely discrete or purely continuous stimuli, and in the case of multidimen-
sional continuous angular and discrete correlates, in the presence of additional quenched disorder in the
distribution. An analytical expression for the mutual information has been obtained in the limit of large noise
by means of the replica trick. Here, we show that the same results can actually be obtained in most cases
without the use of replicas, by means of a much simpler expansion of the logarithm. Fitting the theoretical
model to real neuronal data, we show that the introduction of correlations in the quenched disorder improves
the fit, suggesting a possible role of signal correlations—actually detected in real data—in a redundant code.
We show that even in the more difficult analysis of the asymptotic regime, an explicit expression for the mutual
information can be obtained without resorting to the replica trick despite the presence of quenched disorder,
both with a Gaussian and with a more realistic thresholded-Gaussian model. When the stimuli are mixed
continuous and discrete, we find that with both models the information seem to grow logarithmically to infinity
with the number of neurons and with the inverse of the noise, even though the exact general dependence cannot
be derived explicitly for the thresholded-Gaussian model. In the large noise limit, lower values of information
were obtained with the thresholded-Gaussian model, for a fixed value of the noise and of the population size.
On the contrary, in the asymptotic regime, with very low values of the noise, a lower information value is
obtained with the Gaussian model.

DOI: 10.1103/PhysRevE.68.031906 PACS number~s!: 87.19.La, 87.18.Sn, 87.19.Bb
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I. INTRODUCTION

The mutual information, extensively used in the theory
communication@1,2#, has been more recently proposed a
measure of the coding capacity of real neurons in the b
~see, for example, Refs.@3–5#, for a general overview!. In-
formation estimates, both from real data and in pure theo
ical modeling, ideally quantify how efficiently an extern
observer might discriminate between several correlates
behavior on the basis of the firing of single or multiple cel

Several theoretical studies have explored the ability
one population of neurons to encode external stimuli,
evant to behavior@6–10#; others have tried to assess ho
efficiently the information is transmitted across several l
ers of a network, which may represent distinct stages of p
cessing in some brain area@11–13#.

In most cited works, the replica trick@14# has been suc
cessfully used in order to derive an explicit expression
the mutual information. As we will show in detail in th
following section, from the formula of the information rep
licas do appear as a natural methodological choice, due to
presence of the logarithm of a sum of conditional probab
ties depending on some quenched parameters. Yet in
cited works no attempt has been done to verify whether
same results can be obtained without resorting to repli
even in the cases@6,7,10# where the evaluation could b
carried out without any additional assumption of repli
symmetry.

Moreover, an exact estimate of the mutual informati
regardless of the population sizeN and of the noises is
often unachievable, so that an analytical expression can
1063-651X/2003/68~3!/031906~17!/$20.00 68 0319
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provided only in some limit cases. It might well be that r
stricting oneself to these cases makes the use of rep
redundant or at least an alternative choice to other meth

In particular, Refs.@6,7# have used replicas to study th
initial linear rise of the information, characterized by sm
population sizes and large noise in the firing distributions
the neurons; this limit would roughly correspond to a hi
temperature regime for a physical system such as a
glass. It is reasonable to think that this limit can be trea
and solved without replicas, since it is known that annea
and quenched averages coincide in the high temperatur
gime.

Here, we first reconsider the analysis performed in Re
@6,7#; we show that, in the limit when the noises is large
and the population sizeN is small, the same analytical ex
pressions for the information can be obtained without the
of the replica trick, by means of a simple Taylor expansion
the logarithm, regardless of the nature of the stimu
whether purely discrete or mixed continuous and discre
and both with a Gaussian and with a more realis
thresholded-Gaussian firing distribution.

In the particular case of mixed continuous angular a
discrete stimuli@7#, the distribution had been parametrized
order to model the firing of neurons recorded from the mo
cortex of monkeys performing arm movements, categori
according to a direction and a ‘‘type’’@15,16#. Restricted to
this dataset, correlations in the preferred direction of a giv
unit across different movement types were actually observ
but the impact of such correlations on the information co
tent was not quantified. Thus, here we investigate theor
cally whether correlations introduced in the quenched par
eters characterizing the distribution can improve the fit
©2003 The American Physical Society06-1
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real information curves provided by the model. This wou
suggest that such correlations are information bearing
better, depress the information, leading to a redundant c

We move then to the limit of large population sizes a
small noise. An attempt to study this regime in the prese
of purely discrete stimuli by means of replicas was uns
cessful in Ref.@6#.

Here, we show that even in the asymptotic regime, in
case of purely discrete stimuli, an analytical expression
the mutual information can be provided without the use
the replica trick.

Another replica-free approach to this limit was propos
in Ref. @9#, applicable both to the case of continuous a
discrete stimuli, for a generic firing distribution, provide
that it can be factorized into single neuron probability de
sity functions. No additional quenched disorder was assum
in the distribution. Here, we try and apply this method to o
particular model and we find the assumption under which
retrieve our original approximation.

Finally, in Ref.@7# it has been shown that, when limited
the initial linear regime, both the Gaussian and t
thresholded-Gaussian model provide the same analytica
pression for the mutual information, except for renormaliz
tion of a noise parameter. In particular, lower values of
information were obtained with the thresholded-Gauss
model. We investigate this issue in the asymptotic regi
comparing the leading term of the information for bo
models.

II. POPULATION INFORMATION IN THE INITIAL
LINEAR REGIME

A. Coding of purely discrete and mixed continuous and
discrete stimuli in a Gaussian approximation

The firing of neurons emerging from the analysis of re
data is characterized by strong irregularities and by a w
variability. The choice of a Gaussian model as a poss
firing rate distribution might therefore seem unrealistic a
unjustified. Yet with a large sample of data, it is likely th
most irregularities in the distribution average out; their pr
ence if often due to a too poor sampling, which in turn bia
information estimates, so that smoothing with a Gaussia
other kernels has become a standard procedure in data a
sis ~see Ref.@4# for a review of several regularizing proce
dures!. The advantage in using a Gaussian approximatio
easier mathematical analysis, which allows for the derivat
of an explicit expression for the mutual informatio
@6–8,10#. Moreover, at least in the regime of the initial in
formation rise, the use of a more realistic model leads to
same mathematical expression for the mutual informat
except for a renormalization of the noise@7#. This last issue
will be discussed in more detail in the following section.

Let us consider a population ofN independent cells which
fire to a set ofp discrete stimuli, parametrized by a discre
variables, according to a Gaussian distribution

p~$h i%us!5)
i 51

N
1

A2ps2
exp2@~h i2h i

s!2/2s2#, ~1!
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whereh i is the firing rate of thei th input neuron, whileh i
s is

its mean rate in response to stimuluss.
The mutual information between the neuronal firing ra

$h i% and the stimulis reads

I ~$h i%,s!5(
s

p~s!E )
i

dh i p~$h i%us!log2

p~$h i%us!

p~$h i%!
.

~2!

Since p($h i%! can be written as(sp(s)p($h i%us), it is
easy to show that the mutual information can be expresse
the difference between the entropy of the firing ra
H($h i%) and the equivocation̂H($h i%us)&s :

I ~$h i%,s!5H~$h i%!2^H~$h i%us!&s , ~3!

with

^H~$h i%us!&s52(
s

p~s!E )
i

dh i p~$h i%us!

3 log2 p~$h i%us!, ~4!

H~$h i%!52(
s

p~s!E )
i

dh i p~$h i%us!log2

3F(
s8

p~s8!p~$h i%us8!G . ~5!

The variables$h i% in p($h i%us8) are quenched: the sum
on the stimulis8 should be performed, and the logarith
taken, for any fixed configuration$h i%, before integrating on
$h i%. The replica trick, devised to perform averages of t
partition function across quenched disorder in spin glas
@14#, seems to apply also to this case. Yet, contrary to wha
found in the theory of spin glasses, where the connectivi
vary on a much longer time scale with respect to the sp
and therefore they are quenched, here the presenc
quenched disorder does not reflect any real distinction
tween two separate time scales. In fact, the same sum
pears outside the logarithm, and if one were able to explic
derivep($h i%) from p($h i%us8) there would be no need fo
replicas to evaluateH($h i%).

In the specific case of distribution~1!, p($h i%) has a func-
tional dependence on the configuration of the average r
$h i

s% and it cannot be explicitly derived except for som
trivial cases, such as

h i
s5h i

0 ; s, ~6!

where the information is obviously zero, sincep($h i%us)
does not depend ons anymore; or the opposite noisele
limit, where the cells fire at each stimuluss always with a
pattern$h i

s% and the configurations$h i
s% across the stimuli do

not overlap. In this case, when the stimuli are equally like
so thatp(s)51/p, one has
6-2
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p~$h i%us!5d~$h i%2$h i
s%!, ~7!

p~$h i%!51/p(
s8

d~$h i%2$h i
s8%!, ~8!

and since the average configurations$h i
s% do not overlap, it

is easy to see that the mutual information reaches the u
bound of log2 p.

In a more realistic context, the average firing rates$h i
s%

are not kept fixed, reflecting the strong variability of th
neural activity detected in real data. Therefore, in order
obtain an information estimate independent of a particu
configuration of the selectivities, the variables$h i

s% are con-
sidered quenched and the information must finally be av
aged across the distribution of$h i

s%:

I ~$h i
s%!→^I ~$h i

s%!&h , ~9!

^F~$h i
s%!&h5E d$h i

s%%~$h i
s%!F~$h i

s%!. ~10!

I ($h i
s%) is the mutual information between the neuronal fi

ing rates$h i% and the stimulis evaluated according to Eq
~2!, for a particular configuration of the mean rates$h i

s%.
This approach has been followed in Refs.@6,7#, where the

replica trick has been used to perform the analytical eva
tion.

Let us consider the case where quenched disorder is
correlated and identically distributed across units and ac
the p discrete correlates

%~$hs
i %!5)

i ,s
%~hs

i !5@%~h!#Np. ~11!

As already shown in Refs.@6,7#, it is easy to prove tha
for a population of independent units, the equivocat
^H($h i%us)&s is additive.

By I ($h i%,s) and H($h i%) and ^H($h i%us)&s in the fol-
lowing, I will implicitly mean the corresponding quenche
averaged quantities. Inserting Eq.~1! in Eq. ~4! one obtains

^H~$h i%us!&s5
N

2 ln 2
~11 ln 2ps2!. ~12!

We turn now to the more difficult evaluation of the rate e
tropy. Inserting Eq.~1! in Eq. ~5! and using the equivalenc

lnF(
s8

p~s8!)
i

e2(h i2h i
s8)2/2s2

A2ps2 G
52

N

2
ln 2ps22(

i

h i
2

2s2

1 lnF(
s8

p~s8!)
i

e[2h ih i
s82(h i

s8)2]/2s2G , ~13!

one can integrate out the second term on the right-hand
in Eq. ~13!; the result, added to the first term, simplifies wi
the equivocation, Eq.~12!; rearranging all the terms, the mu
tual information can be written in the following form:
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I ~$h i%,s!52K 1

ln 2 (
s

p~s!E )
i

dh i)
i

e2(h i2h i
s)2/2s2

3 lnF(
s8

p~s8!)
i

e2[(h i
s)21(h i

s8)222h ih i
s8]/2s2G L

h

.

~14!

Due to the presence of the sums and of the quenc
disorder under the logarithm, an analytical expression of
mutual information cannot be obtained in the general ca
yet the evaluation can be performed in some limit cases.
focus here on the initial regime, where the number of cells
not large compared to the noise. The asymptotic regime
large population sizes will be discussed later on.

As it has been shown in Ref.@6#, one way to get rid of the
logarithm and to perform the quenched averages and
sums in Eq.~14! is by means of the replica trick@14#; yet, in
the limit when the noises is very large and the populatio
size N is not large, a straightforward and natural approa
consists of performing a simple Taylor expansion of the
ponentials under the logarithm

lnF(
s8

p~s8!)
i

e2[(h i
s)21(h i

s8)222h ih i
s8]/2s2G

. lnF12(
s8

p~s8!S (
i

~h i
s!2

2s2
1(

i

~h i
s8!2

2s2

2(
i

h ih i
s8

s2
2

1

2 (
i j

h ih jh i
s8h j

s8

s4 D G
.2(

s8
p~s8!S (

i

~h i
s!2

2s2
1(

i

~h i
s8!2

2s2

2(
i

h ih i
s8

s2
2

1

2 (
i j

h ih jh i
s8h j

s8

s4 D
2

1

2 (
s8

p~s8!(
s9

p~s9!(
i j

h ih jh i
s8h j

s9

s4
. ~15!

The terms of the order of 1/s4 must be kept because it ca
be shown that after integration on$h i% they will actually
give a contribution of the of order of 1/s2 to the mutual
information.

Inserting expansion~15! in Eq. ~14! and performing the
integration on$h i%, one obtains

I ~$h i%,s!5
1

ln 2

1

2s2 K (
i F(s

p~s!~h i
s!2

2(
s

(
s8

p~s!p~s8!h i
sh i

s8G L
h

5
1

ln 2

N

2s2 (
s

(
s8

p~s!p~s8!@^~hs!2&h

2^hshs8&h#, ~16!
6-3
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where we have used the fact that quenched disorder is
correlated and identically distributed across stimuli and n
rons.

The averages across quenched disorder and acrosss, s8
can be performed distinguishing between the casess5s8, s
Þs8. The final result for the mutual information up to ord
N/s2 reads

I ~$h i%,s!5
1

ln 2

N

2s2

p21

p
sh

2 , sh
25^h2&h2^h&h

2 .

~17!

The same result has been obtained in Ref.@6# by means of
the replica trick. We have checked that the agreement
tween the two approaches is found also at higher order
N/s2. Yet the derivation via the replica trick is clearly long
and more complicated, anda priori less controllable than the
simple Taylor expansion used here to derive the same res

The interest in the coding of purely discrete stimuli ris
naturally from the need to provide a theoretical framewo
allowing a direct quantitative comparison with the results
real experiments. In fact, in a typical experimental proto
neural activity is recorded from some areas in the bra
while the subject~human or animal! is presented a discret
number of stimuli, or it is trained to perform a discrete nu
ber of tasks.

Yet natural stimuli are multidimensional and some of t
dimensions can vary in a continuous domain. For exampl
visual stimulus can be parametrized through its color~vary-
ing within a discrete set of possible choices! and its orienta-
tion ~represented by continuous angle!. It is therefore a pri-
mary theoretical interest to extend our results to the c
where the stimulus may be multidimensional and the dim
sions may be discrete and continuous.

In Refs. @7,8,16# the coding of movements categorize
according to their direction~continuous dimension! and their
type ~discrete dimension! has been studied via direct info
mation estimates from real data and pure theoretical mo
ing. In particular, in Ref.@7# the information between the
neuronal firing rates and the movements has been evalu
in the limit of large noise and finite population size, in th
presence of quenched disorder and resorting to the rep
trick.

In analogy to the model studied in Ref.@7#, let us consider
a population ofN neurons firing independently of one a
other to an external stimulus parameterized by an anglq
and a discrete variables, according to a Gaussian distributio

p~$h i%uq,s!5)
i 51

N
1

A2ps2
exp2$@h i2h̃ i~q,s!#2/2s2%.

~18!

Such as in Eq.~1!, h i is the firing rate of thei th neuron;
h̃ j (q,s) is its average firing rate corresponding to the stim
lus (q,s),

h̃ i~q,s!5«s
i h̄ i~q!1~12«s

i !h f , ~19!
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h̄ i~q2q i ,s
0 !5h0 cos2mS q2q i ,s

0

2 D , ~20!

where«s
i andq i ,s

0 are sources of quenched disorder, distr
uted, respectively, between 0 and 1 and between 0 andp,
and m is a positive integer; a justification of this choice o
the basis of tuning curves actually observed in real dat
provided in Ref.@7#. It is assumed that quenched disorder
uncorrelated and identically distributed across neurons
stimuli

%~$«s
i %!5)

i ,s
%~«s

i !5@%~«!#Np, ~21!

%~$q i ,s
0 %!5@%~q0!#Np5

1

~2p!Np
. ~22!

Equation~19! states that for each discrete correlates each
neuroni fires at an average rate modulating withq around
the preferred directionq i ,s

0 with an amplitude«s
i ; alterna-

tively, the average rate is fixed to a valueh f , independently
of q, with amplitude 12«s

i . In Ref. @7# it has been shown
that a similar choice for the average rate can effectively
produce the main features of real neurons directional tun
curves.

The basic definitions~2!,~4!, and~5! as well as the initial
treatment can be easily generalized to the case of struct
stimuli via the replacements

(
s

p~s!→(
s

p~s!E dqp~q!,

h i
s→h̃ i~q,s!,

^•••&h→^•••&«,q0. ~23!

It is easy to show that the mutual information can be e
pressed in a form analogous to Eq.~14!:

I ~$h i%,q ^ s!

52K 1

ln 2 (
s

p~s!E dqp~q!E )
i

dh i

3)
i

e2[h i2h i
˜ (q,s)] 2/2s2

lnF(
s8

p~s8!E dq8

3)
i

e2$[ h̃ i (q,s)] 21[ h̃ i (q8,s8)] 222h i h̃ i (q8,s8)%/2s2G L
«,q0

.

~24!

We use again an expansion of the logarithm similar to E
~15!; it is then easy to derive the analogous of Eq.~16!:
6-4
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I ~$h i%,q ^ s!.
1

ln 2

N

2s2 (
s

(
s8

p~s!p~s8!E dq

3E dq8p~q!p~q8!@^@h̃~q,s!#2&«,q0

2^h̃~q,s!h̃~q8,s8!&«,q0#,

From Eqs.~19!–~22!, it is easy to verify that

(
s
E dqp~s!p~q!^@h̃~q,s!#2&«,q0

5~h0!2@~A21a222aA1!^«2&«1a2

12a~A12a!^«&«#, ~25!

(
s

(
s8

p~s!p~s8!E dqdq8p~q!p~q8!

3^h̃~q,s!h̃~q8,s8!&«,q0

5~h0!2F ~A12a!2S p21

p
^«&«

21
1

p
^«2&«D

1a212a~A12a!^«&«G , ~26!

A15
1

22m S 2m

m D , A25
1

24m S 4m

2mD , a5
h f

h0
. ~27!

Inserting Eqs.~25! and ~26! in Eq. ~25!, one obtains the
final expression for the mutual information up to ord
N/s2:

I ~$h i%,q ^ s!.
1

ln 2

N~h0!2

4s2 Fp21

p
2~a2A1!2s«

2

12@A22~A1!2#^«2&«G . ~28!

In Ref. @7# it has been shown that the same expression
the information in the linear approximation is obtained in t
case where the preferred directions do not modulate with
discrete stimuli:q i ,s

0 5q i
0 ; s,i. It can be easily proved that

different contribution to the information would derive in e
ther case from the term̂h̃(q,s)h̃(q8,s8)&«,q0; yet the dif-
fering term becomes zero when averaged acrossq, q8.

Settingq i ,s
0 5q i

0 ; s corresponds to correlating the sign
that each neuron carries about different stimulis. Intuitively,
since no difference in the preferred orientation can be
tected any more while looking at distinct correlatess, one
would expect an information loss. Such a loss is inde
present, as revealed from a detailed evaluation of the q
dratic contribution in the population sizeN. We do not report
the calculation, which is a trivial application of the perturb
tive theory very much similar to the one performed for t
03190
r

e

e-

d
a-

-

linear approximation inN, and which consists in retaining a
the terms of the order ofN2(h0)4/s4 out of the expansion of
the logarithm.

The final expression, obtained adding the second-or
contributions to the linear term, Eq.~28!, reads in either case

I 2.
1

ln 2

N~h0!2

4s2 Fp21

p
2~a2A1!2s«

212@A22~A1!2#^«2&«G
2

1

ln 2

N2~h0!4

2~4s2!2 H p21

p2
2@2~a2A1!2l1#2

1
~l2!2

p F S 1

22m21D 4

(
n50

m21 F S 2m

n
D G4G J , ~29!

I 2
corr.

1

ln 2

N~h0!2

4s2 Fp21

p
2~a2A1!2s«

212@A22~A1!2#

3^«2&«G2
1

ln 2

N2~h0!4

2~4s2!2 H p21

p2
2@2~a2A1!2l1#2

1Fp21

p
~l12l2!21

~l2!2

p G
3F S 1

22m21D 4

(
n50

m21 F S 2m

n
D G4G J , ~30!

where by I 2
corr we mean the information in the correlate

caseq i ,s
0 5q i

0 ; s,i.
The same expression as in Eq.~30! has been obtained in

Ref. @7# by means of the replica trick.
Figure 1, on the left, shows an example of neuron

corded in the supplementary motor area~SMA!, whose pre-
ferred direction does not modulate with the discrete dim
sion ~reproduced from Ref.@7#!. Restrictedly to this datase
such neurons were statistically dominant, even though
significance of such observation should be quantified
means of the analysis of other samples of cells.

On the right, we show the theoretical curves in the qu
dratic approximation for the uncorrelated and correla
cases@Eqs.~29! and~30!, respectively# corresponding to the
best linear fit@Eq. ~28!# of the information as estimated from
a population of SMA cells. To obtain such an estimate,
each value ofN, we extracted random subsamples of ce
out of the total population and we used a decoding pro
dure, finally averaging results across subsamples; detai
the data analysis are given in Ref.@16#. The visual compari-
son shows that the introduction of correlations in the p
ferred directions improves the fit. Even far from proving th
this precise type of signal correlation is the actual mec
nism used by SMA cells, this result suggests that real c
transmit information firing in a correlated way.

B. Coding of mixed continuous and discrete stimuli with a
thresholded-Gaussian model

Till now we have examined the information carried abo
stimuli characterized by discrete or mixed continuous a
discrete dimensions, assuming that the firing of differe
cells is independent across cells and Gaussian distribu
6-5
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FIG. 1. Left: directional tuning for a cell recorded in the right supplementary motor area of a monkey performing four different ty
arm movement. UniLt5unimanual left, UniRt5unimanual right, BiSym5bimanual symmetric, BiOpp5bimanual opposite. On thex axis
angles are in degrees; reproduced from Ref.@7#. Right: comparison between the theoretical information curves corresponding to Eqs~28!
~lin in the legend!, ~29! ~quad!, ~30! ~quad corr!, and the information estimated from a sample of cells recorded in the right suppleme
motor area@16#; m51, p52, the distribution%(«) in Eqs. ~21! is just equal to 1/3 for each of the three allowed values of« 0, 1/2, 1;
(h0/2s)250.64.
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Yet, as already remarked, both assumptions provide a ro
approximation of the firing distribution of real neurons. T
most unjustified one seems to be the Gaussian assump
since it implies that also negative rates have a nonzero p
ability of occurrance;a priori the information rise might
result more or less seriously distorted.

This question has been investigated in Ref.@7#, where a
more realistic model has been proposed, truncating
Gaussian distribution and adding ad peak in zero.

Let us consider once again a population of independ
units firing to mixed continuous and discrete stimuliq ^ s,
where the single neuron distribution is written as follows

P~h i uq,s!5
1

A2ps2
exp2$@h i2h̃ i~q,s!#2/2s2%Q~h i !

12$12erf@h̃ i~q,s!/s#%d~h i !Q~2h i !,

~31!

Q(x) is the Heaviside step function andh̃ i(q,s) has already
been defined in Eq.~19!. erf(x) is the error function:
03190
gh

on,
b-
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nt

erf~x!5
1

A2p
E

2`

x

dte2t2/2. ~32!

In Ref. @7# the mutual informationI ($h i%,q ^ s) has been
evaluated by means of the replica trick, in the limit of lar
noises. The interest in this limit arises since the largers is,
the larger is the Gaussian weight assigned as a whol
negative rates; a consequence might be a larger distortio
the information values.

We show here how the same results can be obtained w
out the use of the replica trick.

As usual, the information can be expressed as the dif
ence between the equivocation and the output entropy, an
gously to Eqs.~4! and~5! and considering replacements~23!.
In Ref. @7# it is shown that the equivocation can be calculat
quite easily as a sum of single neuron terms; assuming
usual that quenched disorder in uncorrelated and identic
distributed across stimuli and neurons, according to Eqs.~21!
and ~22!, one obtains
^H~$h i%uq,s!&q,s5
N

2 ln 2 H @11 ln~2ps2!#^erf@h̃~q,s!/s#&«,q02K h̃~q,s!

A2ps
e2[ h̃(q,s)] 2/2s2L

«,q0

12^@12erf$h̃~q,s!/s%#&«,q0 ln
e

2
22^@12erf$h̃~q,s!/s%# ln@12erf$h̃~q,s!/s%#&«,q0J , ~33!

where we have used the representation of thed function

E
2`

1`

dxd~x!F~x!5 lim
e→0

E
2e/2

e/2

dx
1

e
F~x!. ~34!
6-6
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The equivocation diverges whene→0, but, as we will show later on, this divergence is canceled exactly by a correspo
term in the entropy of the responses, yielding a finite result for the mutual information.

The average across quenched disorder can be performed in the limit of larges and expanding the error functions in Eq.~33!
in powers of 1/s. First, we evaluate the entropy of the responses, since we will show that there is a partial cancella
terms.

Considering Eq.~5! for the entropy of the responses and replacements~23!, it is easy to show that in the case of distributio
~31!, one obtains

H~$h i%!52K (
s

p~s!E dqp~q!E )
i

dh i)
i

F 1

A2ps2
exp2$@h i2h̃ i~q,s!#2/2s2%Q~h i !

1~2$12erf@h̃ i~q,s!/s#%d~h i !Q~2h i !# log2F(
s8

E dq8p~q8,s8!)
i

F 1

A2ps2
exp

2$@h i2h̃ i~q8,s8!#2/2s2%Q~h i !12$12erf@h̃ i~q8,s8!/s#%d~h i !Q~2h i !G G L
«,q0

. ~35!

Developing the products on the neuron indexi and taking into account the symmetry in the distribution of different un
Eq. ~35! can be rewritten as follows:

H~$h i%!52K (
s

p~s!E dqp~q!(
k50

N S N

k D E
0

`

)
i 51

k

dh iE
2`

0

)
i 5k11

N

dh i)
i 51

k
1

A2ps2

3exp2$@h i2h̃ i~q,s!#2/2s2%2N2k )
i 5k11

N

$12erf@h̃ i~q,s!/s#%d~h i !log2F(
s8

E dq8p~q8,s8!

3S )
i 51

k
1

A2ps2
exp2$@h i2h̃ i~q8,s8!#2/2s2%2N2k )

i 5k11

N

$12erf@h̃ i~q8,s8!/s#%d~h i !D G L
«,q0

, ~36!

where we have used the following conventions:

)
i 51

k

xi51 if k50, ~37!

)
i 5k11

N

xi51 if k5N. ~38!

Extracting from the logarithm all the factors which do not depend onq,s and integrating them on$h i%, it is easy to show that
the entropy of the responses can be expressed as follows:

H~$h i%!5(
s
E dqp~q,s!F (

k51

N S N

k D k

2 ln 2
~11 ln 2ps2!^erf@h̃~q,s!/s#&«,q0

k ^12erf@h̃~q,s!/s#&«,q0
N2k

1 (
k50

N21 S N

k DN2k

ln 2
ln~e/2!^erf@h̃~q,s!/s#&«,q0

k ^12erf@h̃~q,s!/s#&«,q0
N2k

1 (
k51

N S N

k D k

2 ln 2

3^h̃2~q,s!/s2erf@h̃~q,s!/s#&«,q0^erf@h̃~q,s!/s#&«,q0
k21 ^12erf@h̃~q,s!/s#&«,q0

N2k
1 (

k51

N S N

k D k

2 ln 2

3^h̃~q,s!/A2pse2h̃2(q,s)/2s2
&«,q0^erf@h̃~q,s!/s#&«,q0

k21 ^12erf@h̃~q,s!/s#&«,q0
N2kG

2K (
s
E dqp~q,s!(

k50

N S N

k D E
0

`

)
i 51

k

dh i)
i 51

k
1

A2ps2
exp2$@h i2h̃ i~q,s!#2/2s2% )

i 5k11

N

$12erf@h̃ i~q,s!/s#%

3 log2F(
s8

E dq8p~q8,s8!S )
i 51

k

exp@2h i h̃ i~q8,s8!2h̃ i
2~q8,s8!/2s2# )

i 5k11

N

$12erf@h̃ i~q8,s8!/s#% D G L
«,q0

,

~39!
031906-7
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where we have used equality~34! and we have assumed that quenched disorder is uncorrelated across units and stim
Subtracting the equivocation, Eq.~33! from the entropy of the responses, Eq.~39!, it is easy to see that after summation o

k, the first two terms in Eq.~39! simplify with analogous terms in Eq.~33!, so that the logarithmic divergence fore→0 cancel
out.

Finally, the mutual information can be rewritten as follows:

I ~$h i%,q ^ s!5(
s
E dqp~q,s!F N

ln 2
^@12erf$h̃~q,s!/s%# ln@12erf$h̃~q,s!/s%#&«,q01

N

ln 2 K h̃~q,s!

A2ps
e2[ h̃(q,s)] 2/2s2L

«,q0

1
N

2 ln 2 K h̃2~q,s!

s2
erf@h̃~q,s!/s#L

«,q0
G2K (

s
E dqp~q,s!(

k50

N S N

k D E
0

`

)
i 51

k

dh i)
i 51

k
1

A2ps2
exp

2$@h i2h̃ i~q,s!#2/2s2% )
i 5k11

N

$12erf@h̃ i~q,s!/s#% log2F(
s8

p~s8!E dq8p~q8!S )
i 51

k

exp@2h i h̃ i~q8,s8!

2h̃ i
2~q8,s8!/2s2# )

i 5k11

N

$12erf@h̃ i~q8,s8!/s#% D G L
«,q0

. ~40!
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Equation~40! constitutes the final expression for the mutu
information in the general case. To proceed with the anal
cal evaluation one must now resort to some approximat
As suggested in Ref.@7# in the limit when the noises is
large, one can expand the error functions in Eq.~40!:

erf~x!.
1

2
1

1

A2p
x1o~x2!. ~41!

A Taylor expansion can be performed also for the ex
nentials under the logarithm. One has

log2F(
s8

E dq8p~q8,s8!S )
i 51

k

exp@2h i h̃ i~q8,s8!

2h̃ i~q8,s8!2/2s2# )
i 5k11

N

$12erf@h̃ i~q8,s8!/s#% D G
. log2F(

s8
p~s8!E dq8p~q8!S 11(

i 51

k
h i h̃ i~q8,s8!

s2

2(
i 51

k h̃ i
2~q8,s8!

2s2
1

1

2 (
i , j 51

k
h ih j h̃ i~q8,s8!h̃ j~q8,s8!

s4 D
3

1

2N2k S 12 (
i 5k11

N A2

p

h̃ i~q8,s8!

s

1
1

p (
iÞ j

h̃ i~q8,s8!h̃ j~q8,s8!

s2 D G . ~42!

Developing all the products one can expand the logarit
again in powers of 1/s, very much similarly to what has
been shown in Eq.~15!. The result is then integrated on$h i%
03190
l
i-
n.

-

and the binomial sums in Eq.~40! can be performed. Details
about the evaluation are given in Appendix B.

Finally, the mutual information can be written as follow

I ~$h i%,q ^ s!.
1

ln 2

N

2s2 S 1

2
1

1

p D(
s

(
s8

p~s!p~s8!

3E dqE dq8p~q!p~q8!@^@h̃~q,s!#2&«,q0

2^h̃~q,s!h̃~q8,s8!&«,q0#

5
1

ln 2 S 1

2
1

1

p DN~h0!2

4s2 Fp21

p
2~a2A1!2s«

2

12@A22~A1!2#^«2&«G , ~43!

where we have used Eqs.~25! and ~26! andA1 , A2, anda
have been defined in Eq.~27!.

This result equals the expression obtained using repl
in Ref. @7#, showing that even with a more complicated d
tribution, other than the simple Gaussian model, the eva
tion can be carried out via a simple Taylor expansion of
logarithm, and no significant advantage derives from the
of the replica trick in the limit case of large noise.

Comparing Eqs.~43! and ~28! one can notice that limit-
edly to the case of large noise, the effect of thresholding
Gaussian distribution with respect to the information
merely a renormalization of the noise for a factor
1/A1/211/p. In Ref. @7# it has been shown that this reno
malization effect holds at higher orders in 1/s2.

III. POPULATION INFORMATION IN THE ASYMPTOTIC
REGIME OF LARGE N AND SMALL s

We turn now to the analysis of the asymptotic regime
the information curve, for a large number of neurons. A fi
6-8
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attempt to solve this limit in the case of independent Gau
ian units and discrete stimuli, as in Eq.~1! has been done in
Ref. @6# by means of the replica trick. Yet, probably due
some too strong approximation in summing on replicas,
final analytical expression was incorrect, according to
authors.

The asymptotic behavior was then studied in Ref.@9# dis-
tinctly in the case of discrete and continuous stimuli, and
a generic distribution of independent units, yet in the abse
of additional quenched disorder. We try here to go furth
and study the case where quenched disorder is present,
distribution ~1!, and mixed continuous and discrete dime
sions characterize simultaneously the stimulus structure.
focus first on the simpler case of purely discrete stimuli.
this context, we compare an approach which is equivalen
the nature of the approximation to the one presented in R
@6#, yet replica-free, to the approach presented in Ref.@9#.
We show in detail under which approximation the two a
proaches provide the same result.

A. Coding of discrete stimuli in a Gaussian approximation

Let us reconsider Eq.~14!. Whens becomes very smal
the probability densityp(h i us) can be approximated by ad
function:

e2(h i2h i
s)2/2s2

A2ps2
→d~h i2h i

s!. ~44!

This approximation, which corresponds to freezing t
quenched disorder represented by the variables$h i% under
the logarithm, has been used in Ref.@6# after getting rid of
the logarithm itself by means of the replica trick. Under th
approximation, the integration on$h i% can be performed and
the mutual information can be rewritten as follows:

I ~$h i%,s!.2
1

ln 2 K (
s

p~s!lnF(
s8

p~s8!

3)
i

e2(h i
s
2h i

s8)2/2s2G L
h

5 log2 p2
1

ln 2 K (
s

p~s!

3 lnF11 (
s8Þs

)
i

e2(h i
s
2h i

s8)2/2s2G L
h

, ~45!

where upper bound log2 p derives from the term withs5s8
in the sum ons8 and we have usedp(s)5const51/p.

Sinces is small one can expand the logarithm

lnF11 (
s8Þs

)
i

e2(h i
s
2h i

s8)2/2s2G
. (

s8Þs
)

i
e2(h i

s
2h i

s8)2/2s2
1

1

2

3 (
s8Þs

(
s9Þs

)
i j

e2(h i
s
2h i

s8)2/2s2
e2(h j

s
2h j

s9)2/2s2
1•••.

~46!
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In the Appendix, we show that inserting this expansion
Eq. ~45!, one can perform the quenched averages and de
an explicit expression for the mutual information. The fin
result reads

I ~$h i%,s!. log2 pF12
p21

log2 p ln 2
@S1~A2psI 1!N

2~p22!S2~2ps2I 2!N#G , ~47!

where we have considered the leading term of the order os
and the first correction of the order ofs2, and one has

S15 (
k51

`
~21!k11

kN/211
, S25 (

k51

`
~21!k11

kN/2
,

I 15E dh%2~h!, I 25E dh%3~h!. ~48!

When the noise goes to zero and the population size is la
the information reaches the upper bound of log2 p.

Figure 2 shows the mutual information according to E
~47! as a function of the population size and for differe
values of the noises. Circles and stars are, respectively, f
the full mutual information with both the leading and th
correction terms in Eq.~47! and with only the leading term
of the order ofsN. As it is evident from the plot, the large
s, the slower the approach to the ceiling and larger
weight acquired by the correction term of the order ofs2N.

An alternative replica-free method to study the asympto
information regime has been proposed in Ref.@9#. In prin-
ciple, the method looks quite efficient and, moreover, it c
be applied both to continuous and to discrete stimuli.

FIG. 2. Mutual information as in Eq.~47!, as a function of the
population sizeN. Different curves correspond to different values
the noises; circles are for the information with only the leadin
term of the order ofsN in Eq. ~47!, while stars are for the full
information with also the correction term of the order ofs2N
6-9
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Yet no additional quenched disorder affected the distri
tions considered in Ref.@9#. We try now to apply the method
to our particular coding scheme.

Let us reconsider Eq.~2! for the mutual information. With
a change of variables, it can be rewritten as

I ~$h i%,s!52(
s

p~s!E )
s9Þs

dXs9^p~$Xs9%!&h log2

3F(
s8

p~s8!exp~Xs8!G , ~49!

Xs85
1

N
lnS p~$h i%us8!

p~$h i%us! D
5

1

N (
i

~h i
s2h i

s8!~h i
s1h i

s822h i !/2s2, ~50!

p~$Xs8%!5E d$h i%p~$h i%us! )
s8Þs

d„Xs82Xs8~$h i%,s,s8!…,

~51!

where in deriving the explicit expression forXs8 we have
used distribution~1!. This change of variable allows to mov
the quenched disorder from inside the logarithm to the d
tribution p($Xs8%).

Using the integral representation for thed function and
integrating on$h i%, Eq. ~51! can be rewritten as follows:

p~$Xs8%!5E )
s8Þs

dYs8
2p

expS 2ıYs8FXs81
1

N (
i

~h i8

2h i
s!2/2s2G D )

s8Þs
)

s9Þs

expS 2
Ys8
N

Ys9
N (

i

3~h i
s82h i

s!~h i
s92h i

s!/2s2D . ~52!

We notice that whenN grows large ands becomes small, the
argument in the second exponential is of the order of 1N
with respect to the first one: a relatively flat Gaussian
multiplied times a strongly oscillating periodic function
Thus, we put the second function equal to 1 obtaining

p~$Xs8%!5 )
s8Þs

dS Xs81
1

N (
i

~h i82h i
s!2/2s2D . ~53!

We notice that
03190
-

-

s

1

N (
i

~h i82h i
s!2/2s2

52E d$h i%p~$h i%us!Xs8~$h i%,s,s8!

52E d$h i%p~$h i%us!
1

N
lnS p~$h i%us8!

p~$h i%us! D
52

1

N
KL~s8uus!, ~54!

whereKL(s8uus) is the Kullback-Leibler divergence betwee
the distributionsp($h i%us8) andp($h i%us). Thus, under this
approximation, the distributionp($Xs8%) factorizes into a
product ofd-functions centered on the mean value ofXs8 ;
s8.

Inserting Eq.~53! in the expression for the mutual infor
mation, Eq.~49!, it is easy to show that integrating on$Xs8%
one reobtains Eq.~45!. Thus, approximating the variable
$Xs8% with the mean of the distribution, as in Eq.~53!, cor-
responds to thed-function approximation, Eq.~44!.

A more accurate estimate might be obtained calculat
the correction given by the second exponential in Eq.~52!
that we had previously neglected. Yet, integration on$Ys8%
would lead to the introduction of matrices which depend
the quenched disorder$h i

s%, which therefore must be aver
aged out first, in order to derivêp($Xs9%)&h . The average
might be performed specifying the distribution of th
quenched disorder%(h), but even in this case, integratin
out the variables$h i

s% introduces a nontrivial dependence o
the variables$Ys8% which in turn can be integrated out b
means of further ansatz. Details about the evaluation of
correction and of the results will be published elsewh
@17#.

B. Coding of mixed discrete and continuous stimuli:
Gaussian vs thresholded-Gaussian model

As we have shown in the preceding section, in the largs
limit both the technical evaluation and the final express
for the mutual information are formally the same whether
stimuli are discrete or continuous. On the other hand, in
asymptotic regime of smalls a qualitative difference exists
between the case where the stimuli are discrete or cont
ous, in that in the former case the information is bounded
the entropy of the stimulus set, while in the latter the info
mation grows to infinity as the noise goes to zero, or if t
number of neurons grows to infinity for a finite noise. He
we calculate the expression of this asymptotic growth, wh
corresponds to the upper bound in the case of purely disc
stimuli. We compare the two cases of Gaussian a
thresholded-Gaussian models, in order to assess whethe
in the larges regime, a plain relationship such as a ren
malization of the noise links the two expressions.

Let us reconsider distribution~18!. The expression for the
mutual information is given by Eq.~24! that we recall
6-10
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I ~$h i%,q ^ s!

52K 1

ln 2 (
s

p~s!E dqp~q!E )
i

dh i

3)
i

e2[h i2h i
˜ (q,s)] 2/2s2

lnF(
s8

p~s8!E dq8

3)
i

e2$[ h̃ i (q,s)] 21[ h̃ i (q8,s8)] 222h i h̃ i (q8,s8)%/2s2G L
«,q0

.

~55!

In analogy with approximation~44!, in the limit whens
becomes very small, we use

e2[h i2h̃ i (q,s)] 2/2s2

A2ps2
→d„h i2h̃ i~q,s!…. ~56!

Under this aproximation, we obtain in analogy to Eq.~45!

I ~$h i%,q ^ s!.2
1

ln 2 K (
s

p~s!E dqp~q!ln

3F(
s8

p~s8!E dq8p~q8!

3)
i

e2[ h̃ i (q8,s8)2h̃ i (q,s)] 2/2s2G L
q0,«

.

~57!

In the preceding section, we have seen that in the cas
p purely discrete stimuli, the upper bound log2 p was given
by the term withs5s8 under the logarithm. Therefore, in th
case of mixed continuous and discrete stimuli, we expect
same term, after integration onq8, to give the logarithm of a
coefficient depending on the ratio betweenN ands2, which
grows to infinity whens→0. Let us extract and calculat
the term withs5s8 out of Eq.~57!:

E dq8p~q8!p~s!)
i

e2[ h̃ i (q8,s)2h̃ i (q,s)] 2/2s2
. ~58!

It is clear that whens becomes small the major contributio
to the integral comes from the valuesq8.q. Therefore, we
expand the differenceh̃ i(q8,s)2h̃ i(q,s),
03190
of

e

h̃ i~q8,s!2h̃ i~q,s!.
]h̃ i~q8,s!

]q8
U

q85q

~q82q!

5
h0

2
«s

i sin~q2q i ,s
0 !~q82q!,

~59!

where we have explicitely used expressions~19! and ~20!.
In the limit whens→0 the resulting Gaussian distribu

tion is approximated with ad function and the integral on
dq8 can be performed. Extracting this contribution out of t
logarithm, the information can be rewritten as follows:

I ~$h i%,q ^ s!. log2F pAp

A2

ANh0

s G1(
s
E dqp~s,q!

3K 1

2
log2F 1

N (
i

~«s
i !2sin2~q2q i ,s

0 !G L
q0,«

2
1

ln 2 K (
s

p~s!E dqp~q!lnF1

1
h0

A8ps2
A(

i 51

N

~«s
i !2sin2~q2q i ,s

0 ! (
s8Þs

3E dq8)
i

e2[ h̃ i (q8,s8)2h̃ i (q,s)] 2/2s2G L
h

.

~60!

The quenched average in the second term can be perfor
in the thermodynamic limit letting the average pass the lo
rithm in a mean field approximation. The third term behav
like log2@11D#, where D vanishes likeAN/s exp(2N/s2)
when s→0. The information in the leading term can b
finally expressed in the following form:

I ~$h i%,q ^ s!. log2S pAp

A2

ANh0

s
A^«2&«

2 D . ~61!

When the number of neurons grows to infinity and/or t
noise tends to zero, the information grows logarithmically
infinity. Notice that the case of purely continuous stimuli c
be retrieved by takingp51: not surprisingly, the continuou
dimension plays a major role in determining the asympto
growth of the information to infinity, with a relatively mild
modulation according to the numberp of discrete correlates

We turn now to the case of the thresholded-Gauss
model, Eq.~31!. As we have shown previously, the mutu
information can be expressed as in Eq.~40!. In the limit of
smalls, we apply approximation~56!. After a rearrangemen
of the terms, we obtain
6-11
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I ~$h i%,q ^ s!.(
s
E dqp~q,s!F N

ln 2
^@12erf$h̃~q,s!/s%# ln@12erf$h̃~q,s!/s%#&«,q0

1
N

ln 2 K h̃~q,s!

A2ps
e2[ h̃(q,s)] 2/2s2L

«,q0

1
N

2 ln 2 K h̃2~q,s!

s2
erf@h̃~q,s!/s#L

«,q0
G

2K (
s
E dqp~q,s!(

k50

N S N

k D )
i 5k11

N

$12erf@h̃ i~q,s!/s#%H (
i 51

k
k

ln 2

h̃ i
2~q,s!

s2

1 log2F(
s8

p~s8!E dq8p~q8!S )
i 51

k

e2[ $h̃ i (q8,s8)2h̃ i (q,s)%2/2s2] )
i 5k11

N

$12erf@h̃ i~q8,s8!/s#% D G J L
«,q0

.

~62!

Out of this expression, we aim at keeping the leading terms, which diverge whens goes to zero and determine the asympto
behavior. In the first approximation, we will neglect terms going to zero withs, which would play a role in the first correctio
to the asymptotic value. As already done in the case of the of the Gaussian model, we consider the term withs85s in the
discrete sum under the logarithm. Looking at the function to be integrated onq8, it is easy to see that the product of thek
exponentials is maximal for values ofq8 close toq, while each one of the otherN2k factors containing error functions i
maximal for cell and stimulus specific values ofq8, namely, the ones corresponding to the smallest values ofh̃ i(q8,s). Thus,
the main contribution for the integral comes from the values ofq8 close toq and we can repeat the procedure as in Eqs.~59!
and ~60!, obtaining

I ~$h i%,q ^ s!.(
s
E dqp~q,s!F N

ln 2
^@12erf$h̃~q,s!/s%# ln@12erf$h̃~q,s!/s%#&«,q01

N

ln 2 K h̃~q,s!

A2ps
e2[ h̃(q,s)] 2/2s2L

«,q0

1
N

2 ln 2 K h̃2~q,s!

s2
erf@h̃~q,s!/s#L

«,q0
G2K (

s
E dqp~q,s!(

k50

N S N

k D )
i 5k11

N

$12erf@h̃ i~q,s!/s#%

3H (
i 51

k
k

ln 2

h̃ i
2~q,s!

s2
2 log2F pAp

A2

Akh0

s G2
1

2
log2F1

k (
i 51

k

~«s
i !2 sin2~q2q i ,s

0 !G
1 (

i 5k11

N

log2$12erf@h̃ i~q,s!/s#%1 log2F11
h0

A8ps2
A(

i 51

k

~«s
i !2 sin2~q2q i ,s

0 !

3 (
s8Þs

E dq8S )
i 51

k

e2[ $h̃ i (q8,s8)2h̃ i (q,s)%2/2s2] )
i 5k11

N

$12erf@h̃ i~q8,s8!/s#% D G J L
«,q0

. ~63!

Performing the sums onk and taking the limit of smalls, it is easy to show that all terms simplify or vanish with higher ord
in s, except for the second and third term in the sum onk. The third term can be evaluated in a mean field approxima
passing the quenched average under the logarithm: sinceN is very large,k is also large for most values. The leading asympto
term finally reads

I ~$h i%,q ^ s!. log2S pAp

A2

ANh0

s
A^«2&«

2 D 1
1

2 (
s
E dqp~q,s!

3 (
k51

N21 S N

k D ^12erf@h̃ i~q,s!/s#&«,q0
N2k log2S pAp

A2

Akh0

s
A^«2&«

2 D . ~64!
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FIG. 3. Information for the Gaussian vs thresholded-Gaussian model with mixed continuous and discrete stimuli, according to~61!
and~64!. h051, p54, a50.2, «s

i can take values 3/10, 6/10, and 9/10 with equal probability. Left: asymptotic behavior as a funct
the population sizeN for s50.01. Right: as a function of the noises for a population size ofN55 cells.
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Since the first term is exactly the information for the Gau
ian model, Eq.~61!, we see that already at the leading ter
the rise to infinity withN is slightly higher for the thresh
olded Gaussian model. It is quite difficult to extract analy
cally the exact dependence onN and s from Eq. ~64!. We
have evaluated the sum onk numerically by means of a
MATLAB code.

Figure 3~a! shows the mutual information for both mode
as a function of the population size. It must be said that wh
Eq. ~61! is valid for generic values of the parameters, p
vided the noise is small, more restrictive assumptions un
lie the derivation of Eq.~64!. In particular, one has to ex
clude the values for which the tuning curveh̃ i(q,s) is
identically zero @namely, a50 and «s

i 51 with a finite
weight in Eq.~19!#; the reason is that for very small value
of the noise, the weight of thed peak in distribution~31!

becomes proportional tod„h̃ i(q,s)…, and several terms in
Eq. ~63! cannot be neglected any more.

Moreover, for any fixed value ofN there is an upper
bound on the value of the noise, beyond which approxim
tion ~61! must be integrated by the neglected terms. This
be seen by direct analytical evaluation of each term.

As an example, we show in Fig. 3~b! this effect for a
population of five cells: for values ofs close to 0.05, the
decrease in the information for the thresholded Gaus
model starts slowing down, and for higher values of t
noise, the information would even increase.

IV. DISCUSSION

We have presented a detailed analysis of the mutual in
mation carried by one population of independent units ab
a set of stimuli, examining both the case where the stim
are purely discrete and the case where they are characte
by an additional continuous angular dimension. In fact, e
03190
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n

though in real experiments performed on trained animals
stimuli always vary in a discrete set, since even continu
dimensions are sampled on a finite number of points, in
ture the real brain must learn how to discriminate high
dimensional stimuli or behavioral correlates, whose dim
sions may equally be continuous or discrete. For our spec
model, we have been inspired by the data recorded in
motor cortex of monkeys performing arm movements wh
might be parameterized according to a~continuous! direction
and to a~discrete! ‘‘type’’ @15,16#, We have focused on two
possible limits, namely, the limit of finite population size an
large noise, which corresponds to the initial information ri
and the asymptotic regime of large numbers of neurons
small noise. The limit of large noise has been recently st
ied in Ref.@7# by means of the replica trick. Here, we hav
shown that regardless of the structure of the stimu
whether continuous or discrete, the same results can be
tained without resorting to the replica trick, by a mere e
pansion of the logarithm. Moreover, we have shown t
correlations introduced in the preferred orientations of e
neuron, across different values of the discrete parameter,
increase the redundancy, depressing the information. Thi
sue is biologically relevant since in several cortical are
neurons show a tuning for the direction and, in particular,
the dataset analyzed in Ref.@16# such correlations were in
deed observed.

Modifying accordingly the theoretical model did improv
the fit of real information curves, suggesting that the cor
lations detected in the data are information bearing—here
a negative sense, they depress the information content.

We have been able to study analytically the asympto
approach to the upper information bound with purely d
crete stimuli, always without replicas, calculating both t
leading term of the order ofsN and the correction of the
order of s2N. We have shown how to retrieve our resu
6-13
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using a different approach@9#, always replica-free. This ap
proach does allows to go beyond our original approximati
Yet, in the presence of additional quenched disorder as in
case of our specific model, further assumptions are neces
to proceed with the analytical evaluation of the correction
careful analysis is still in progress and will be presented e
where@17#.

Finally, we have evaluated the asymptotic informati
value in the presence of mixed continuous and disc
stimuli, which grows to infinity when the noise goes to ze
and/or the number of neurons becomes large. We have fo
that the information grows to infinity logarithmically withN
and with the inverse of the noise for the Gaussian mo
while the exact dependence for the thresholded-Gaus
model is more difficult to detect. Under certain conditio
and for very low values of the noise, the asymptotic inf
mation is higher for the thresholded-Gaussian model than
the pure Gaussian.

This result is quite interestingper se, but we refrain from
any speculation leaving its interpretation to a more care
evaluation of the information. In particular, it will be inte
esting to evaluate the impact of the corrections neglecte
Eq. ~63! @17#.

It must be said that the validity of our results is n
checked here by means of numerical simulations. In a pr
ous work @8#, we have shown and discussed in detail th
since information is a very sensitive measure to limited sa
pling, in our specific case of a continuous rate model w
additional quenched parameters, the numerical evaluatio
sults extremely hard, especially in the most interesting li
of large population sizes. The simulations presented in R
@8# could be carried out using a decoding procedure whic
meant to reduce the bias. Even so, the agreement with
analytical results was found only for a population size
maximum two cells, the curve deviating due to the distort
caused by decoding for larger population sizes. We are
rently working in order to improve the numerical techniqu
and obtain a better check of our analytical results for mos
the parameter space. Nonetheless, we think that the wi
established difficulty in getting accurate numerical inform
tion estimates with models of this type makes our analyt
efforts and the results presented here even more remark
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APPENDIX A: THE SMALL s LIMIT IN PRESENCE OF
PURELY DISCRETE STIMULI

Let us reconsider Eq.~45!. Inserting expansion~46!, one
obtains
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I ~$h i%,s!. log2 p2
1

ln 2 K (
s

p~s!

3F (
s8Þs

)
i

e2(h i
s
2h i

s8)2/2s2G L
h

. log2 p2
1

ln 2 S (
s

p~s!(
k51

`

(
s1Þs

••• (
skÞs

3K expF2(
l 51

k

~hs2hsl !2/2s2G L
h

ND , ~A1!

where we have used the fact that quenched disorder is
correlated and identically distributed across neurons
stimuli.

When s becomes very small one can use the followi
approximation:

e2(hs2hs1)2/2s2→A2ps2d~hs2hs1!. ~A2!

Let us reconsider the term withk51 in Eq. ~A1!:

(
s1Þs

^e2(hs2hs1)2/2s2
&h

N

→ (
s1Þs

~A2ps!NF E dhsdhs1%~s!%~s1!d~hs2hs1!GN

5~p21!~A2ps!NF E dh%2~h!GN

. ~A3!

Therefore, this term gives a contribution of the order ofsN.
It is easy to check that at each orderk, the term withs1

5s2 , . . . ,5skÞs gives a contribution of the order ofsN: in
fact, while for a generic choice ofs1 , s2 , . . . ,sk out of thep
correlates one has finally severald functions each of which,
according to Eq.~A2!, carries a factor ofs, when all the
stimuli are equal only oned function remains and the resu
is of the order ofsN. Therefore, one has to sum all th
contributions to calculate the exact coefficient determin
the asymptotic approach of the information to the upp
bound. For a generic orderk in the expansion of the loga
rithm, one has

~21!k11

k (
s15s2 , . . . ,5skÞs

K expF2(
l 51

k

~hs2hsl !2/2s2G L
h

N

→ ~21!k11

k (
s1Þs

^e2k(hs2hs1)2/2s2
&h

N.
~21!k11

kN/211
~p21!

3~A2ps!NF E dh%2~h!GN

. ~A4!

It is now clear that to obtain the contribution at all ordersk,
one must sum the series
6-14
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S15 (
k51

`
~21!k11

kN/211
, ~A5!

and the final contribution to the mutual information up
ordersN can be expressed as follows:

~p21!S1~A2psI 1!N, I 15E dh%2~h!. ~A6!

Inserting Eq.~A6! in Eq. ~A1!, one obtains the expression o
the asymptotic approach to the ceiling up to ordersN:

I ~$h i%,s!. log2 pF12
p21

log2 p ln 2
@S1~A2psI 1!N#G .

~A7!

This result can be easily extended to higher powers ofs.
The first correction of the order ofs2N to the leading term
can be calculated through the same technique. Since a
kth order in the expansion of the logarithm the factorsN was
obtained considering only the configuration where all
stimuli s1 , . . . ,sk are equal, it is clear that each configur
tion where all the stimuli except one are equal will gener
a factor ofs2N; in fact, if, say,l stimuli are different from
one another amongk, one will have to introduce ad function
for each of thel exponentials, according to Eq.~A2!. Let us
see in detail thekth order contribution, assuming, for ex
ample, that all stimuli are equal excepts1:
03190
the

e

e

~21!k11

k (
s1Þs

(
s25s3 , . . . ,5skÞs,s1

3K expF2(
l 51

k

~hs2hsl !2/2s2G L
h

N

→ ~21!k11

k (
s1Þs

(
s2Þs1 ,s

^e2(hs2hs1)2/2s2

3e2(k21)(hs2hs2)2/2s2
&h

N . ~A8!

A d function is introduced according to Eq.~A2! for each of
the two exponentials in Eq.~A8!; since one hask possible
choices for the stimulus which is different from the otherk
21, the final result must be multiplied times a factor ofk
more; finally, one has

~21!k11

~k21!N/2
~p21!~p22!~2ps2!NF E dh%3~h!GN

.

~A9!

Summing all terms at any orderk, the total contribution order
s2N to the mutual information can be written as follows:

~p21!~p22!S2~2ps2I 2!N, S25 (
k51

`
~21!k

kN/2
,

I 25E dh%3~h!. ~A10!

Inserting this result in Eq.~A7!, one obtains the final expres
sion for the mutual information up to orders2N, Eq. ~47!.

APPENDIX B: LARGE s LIMIT FOR THE
THRESHOLDED-GAUSSIAN MODEL

Let us reconsider Eqs.~42!. Developing all the products
one can expand the logarithm in powers of 1/s:
log2F(
s8

p~s8!E dq8p~q8!S 11(
i 51

k
h i h̃ i~q8,s8!
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2(

i 51
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2 (
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h ih j h̃ i~q8,s8!h̃ j~q9,s9!

s4
1

2

p (
iÞ j

h̃ i~q8,s8!h̃ j~q9,s9!

s2

22(
i 51

k

(
j 5k11

N A2

p

h i h̃ i~q8,s8!h̃ j~q9,s9!

s3 D G , ~B1!

where we have kept only the terms which will give a contribution of the order of 1/s2 to the information.
This expression has to be inserted in Eq.~40! and integrated on$h i%. One obtains

2K (
s
E dqp~q,s!(

k50

N S N

k D E
0

`

)
i 51

k

dh i)
i 51

k
1

A2ps2
exp2@$h i2h̃ i~q,s!%2/2s2#

3 )
i 5k11

N

$12erf@h̃ i~q,s!/s#% log2F(
s8

p~s8!E dq8p~q8!S )
i 51

k

exp@2h i h̃ i~q8,s8!2h̃ i
2~q8,s8!/2s2#

3 )
i 5k11

N

$12erf@h̃ i~q8,s8!/s#% D G L
«,q0

. (
s,s8,s9

E dqdq8dq9p~s,q!p~s8,q8!p~s9,q9!F (
k50

N21 S N

k D ~N2k!^erf@h̃~q,s!/s#&«,q0
k

3^12erf@h̃~q,s!/s#&«,q0
N2k

2 (
k51

N S N

k D k

ln 2
^h̃~q,s!h̃~q8,s8!/s2erf@h̃~q,s!/s#&«,q0^erf@h̃~q,s!/s#&«,q0

k21 ^1

2erf@h̃~q,s!/s#&«,q0
N2k

2 (
k51

N S N

k D k

ln 2
^h̃~q8,s8!/A2pse2h̃2(q,s)/2s2

&«,q0^erf@h̃~q,s!/s#&«,q0
k21 ^12erf@h̃~q,s!/s#&«,q0

N2k

1 (
k50

N21 S N

k DN2k

ln 2
A2

pK h̃~q8,s8!

s
@12erf$h̃~q,s!/s%#L

«,q0
^erf@h̃~q,s!/s#&«,q0

k ^12erf@h̃~q,s!/s#&«,q0
N2k21

1 (
k51

N S N

k D k

2 ln 2 K h̃~q8,s8!h̃~q9,s9!

s2
erf@h̃~q,s!/s#L

«,q0

^erf@h̃~q,s!/s#&«,q0
k21 ^12erf@h̃~q,s!/s#&«,q0

N2k

1 (
k50

N21 S N

k D N2k

p ln 2
^h̃~q8,s8!h̃~q9,s9!/s2@12erf$h̃~q,s!/s%#&«,q0^erf@h̃~q,s!/s#&«,q0

k ^12erf@h̃~q,s!/s#&«,q0
N2k21G ,

~B2!

where we have assumed that quenched disorder is uncorrelated across neurons.
It must be noticed that the terms of the order ofN2 appearing in the expansion of the logarithm, Eq.~B1! do not appear in

Eq. ~B2! any more: it can be easily shown that after averaging across the stimuli they cancel out.
The sums onk in Eq. ~B2! can be performed and the result is then inserted in the expression for the mutual informatio

~40!, which finally can be rewritten as follows:
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2
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Using expansion~41! for the error function and keeping only the terms up to orderN/s2, one arrives at Eq.~43!.
y

W

-
a

v.

E.

u-
@1# C.E. Shannon, AT&T Tech. J.27, 379 ~1948!.
@2# T.M. Cover and J.A. Thomas,Elements of Information Theor

~Wiley, New York, 1991!.
@3# F. Rieke, D. Warland, R.R. de Ruyter van Steveninck, and

Bialek, Spikes: Exploring the Neural Code~MIT Press, Cam-
bridge, MA, 1996!.

@4# E.T. Rolls and A. Treves,Neural Networks and Brain Function
~Oxford University Press, Oxford, 1998!.

@5# Alessandro Treves, inNeuro-Informatics and Neural Model
ling, edited by F. Moss and S. Gielen, Handbook of Biologic
Physics,~Elsevier, Amsterdam, 2000!, pp. 803–829.

@6# Inés Samengo and Alessandro Treves, Phys. Rev. E63, 011910
~2001!.

@7# V. Del Prete and A. Treves, Phys. Rev. E64, 021912~2001!.
@8# V. Del Prete and A. Treves, Phys. Rev. E65, 041918~2002!.
03190
.

l

@9# K. Kang and H. Sompolinsky, Phys. Rev. Lett.86, 4958
~2001!.

@10# H. Sompolinsky, H. Yoon, K. Kang, and M. Shamir, Phys. Re
E 64, 051904~2001!.

@11# A. Treves and E.T. Rolls, Hippocampus2, 189 ~1992!.
@12# A. Treves, J. Comput. Neurosci.2, 259 ~1995!.
@13# S. Schultz and A. Treves, Phys. Rev. E57, 3302~1998!.
@14# M. Mezard, G. Parisi, and M. Virasoro,Spin Glass Theory and

Beyond~World Scientific, Singapore, 1987!.
@15# O. Donchin, A. Gribova, O. Steinberg, H. Bergman, and

Vaadia, Nature~London! 395, 274 ~1998!.
@16# V. Del Prete, O. Steinberg, A. Treves, and Eilon Vaadia, Ne

rocomputing38–49, 1181~2001!.
@17# Valeria Del Prete~unpublished!.
6-17


